Équations différentielles

Équations du second ordre sans terme du 1er ordre (sans second membre)

Équations de la forme :

$$\checkmark \quad \frac{d^2 f}{dt^2} + a f = 0 \qquad \text{ou encore } \ddot{f} + a f = 0 \qquad \text{admettant une solution } f(t) \text{ fonction du temps } t.$$

$$\checkmark \frac{d^2g}{dx^2} + ag = 0$$
 ou encore $g'' + ag = 0$ admettant une solution $g(x)$ fonction d'une variable d'espace x .

Rq : le coefficient a n'a pas la même dimension dans les deux équations.

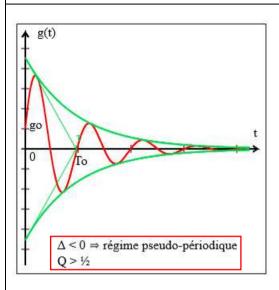
La forme des solutions (oscillatoire ou non) dépend uniquement du signe du coefficient a :

- \checkmark $a > 0 \Rightarrow$ solution oscillatoire (i.e. exponentielles complexes); on pose alors $a = \omega^2$ ou $a = k^2$.
- \checkmark $a < 0 \Rightarrow$ solution non oscillatoire (i.e. exponentielles réelles); on pose alors $a = -\omega^2$ ou $a = -k^2$.

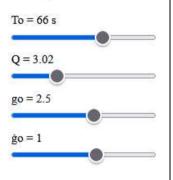
Signe de a	Équation différentielles	Solutions			
a > 0	$\ddot{f} + \omega^2 f = 0$ En posant $a = \omega^2$ où ω est la pulsation temporelle $\omega = \frac{2\pi}{T}$	$f(t) = A\cos(\omega t) + B\sin(\omega t)$	ou	$f(t) = \underline{A} e^{j\omega t} + \underline{B} e^{-j\omega t}$	Oscillateur harmonique
	$g'' + k^2 g = 0$ En posant $a = k^2$ où k est la pulsation spatiale $k = \frac{2\pi}{\lambda}$	$g(x) = A\cos(kx) + B\sin(kx)$		$g(x) = \underline{A} e^{jkx} + \underline{B} e^{-jkx}$	
		Ondes stationnaires	Critère de choix ↔	Ondes incidente / réfléchie	
a < 0	$\ddot{f} - \omega^2 f = 0$ En posant $a = -\omega^2$ où ω est la pulsation temporelle $\omega = \frac{2\pi}{T}$	$f(t) = A e^{\omega t} + B e^{-\omega t}$			Oscillateur
	$g'' - k^2 g = 0$ En posant $a = -k^2$ où k est la pulsation spatiale $k = \frac{2\pi}{\lambda}$	$g(x) = Ae^{kx} + Be^{-kx}$			

Rq: dans le cas de la forme complexe, les coefficients <u>A</u> et <u>B</u> sont complexes mais la solution finale est réelle et doit être exprimée sous forme réelle.

$$\ddot{g} + \frac{\omega_0}{Q} \dot{g} + \omega_0^2 g = 0$$



$$\ddot{g} \; + \; \frac{\omega_0}{Q} \dot{g} \; + \omega_0^2 g = 0 \label{eq:gaussian_eq}$$



Solutions de la forme e^{rt} où r est solution de l'équation caractéristique :

$$r^2+rac{\omega_0}{Q}r+\omega_0^2=0$$

 $\Delta \le 0 \Rightarrow r_1$ et r_2 complexes conjugués

- $\Rightarrow e^{r_1 t}$ et $e^{r_2 t}$ sont des exponentielles complexes
- ⇒ g(t) s'exprime à l'aide de fonctions sinusoïdales
- \Rightarrow g(t) est pseudo-oscillante

Coefficient du terme du 1er ordre + $\omega_0/Q > 0$

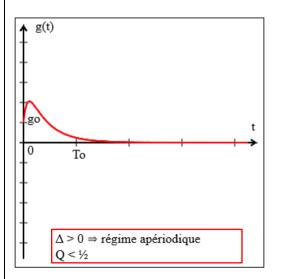
⇒ amortissement

Calculs:

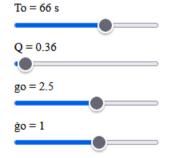
Solutions E.C.:
$$r_{1/2} = -\frac{1}{\tau} \pm j\omega$$

avec
$$\frac{1}{\tau} = \frac{\omega_0}{2Q}$$
 et $\omega = \omega_0 \sqrt{1 - \frac{1}{4Q^2}}$

$$\Rightarrow g(t) = e^{-t/\tau} (A\cos(\omega t) + B\sin(\omega t))$$



$$\ddot{g} \; + \; \frac{\omega_0}{Q} \dot{g} \; + \omega_0^2 g = 0$$



Solutions de la forme e^{rt} où r est solution de l'équation caractéristique :

$$r^2+rac{\omega_0}{Q}r+\omega_0^2=0$$

 $\Delta \ge 0 \Rightarrow r_1$ et r_2 réelles

- $\Rightarrow e^{r_1 t}$ et $e^{r_2 t}$ sont des exponentielles réelles
- \Rightarrow g(t) n'oscille pas

Coefficient du terme du 1^{er} ordre + $\omega_0/Q > 0$

⇒ amortissement

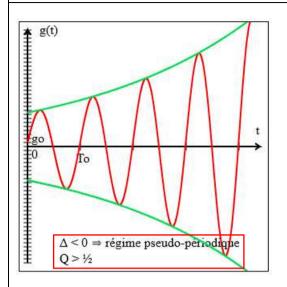
Calculs:

Solutions E.C.:
$$r_{1/2} = -\frac{1}{\tau} \pm j\omega$$

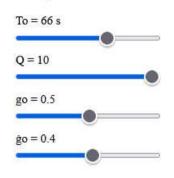
avec
$$\frac{1}{\tau} = \frac{\omega_0}{2Q}$$
 et $\omega = \omega_0 \sqrt{\frac{1}{4Q^2} - 1}$

$$\Rightarrow g(t) = e^{-t/\tau} (Ae^{\omega t} + Be^{-\omega t})$$

$$\ddot{g} - \frac{\omega_0}{Q} \dot{g} + \omega_0^2 g = 0$$



$$\ddot{g} - \frac{\omega_0}{Q}\dot{g} + \omega_0^2 g = 0$$



Solutions de la forme e^{rt} où r est solution de l'équation caractéristique :

$$r^2$$
 - $rac{\omega_0}{Q}r$ + $\omega_0^2=0$

 $\Delta \le 0 \Rightarrow r_1$ et r_2 complexes conjugués

- $\Rightarrow e^{r_1 t}$ et $e^{r_2 t}$ sont des exponentielles complexes
- \Rightarrow g(t) s'exprime à l'aide de fonctions sinusoïdales
- \Rightarrow g(t) est pseudo-oscillante

Coefficient du terme du 1er ordre - $\omega_0/Q \le 0$

⇒ amplification

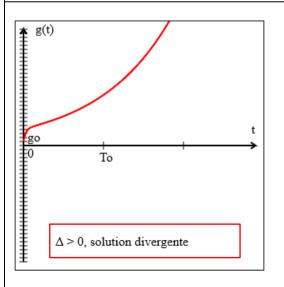
Calculs:

Solutions E.C.:
$$r_{1/2} = +\frac{1}{\tau} \pm j\omega$$

avec
$$\frac{1}{\tau} = \frac{\omega_0}{2Q}$$
 et $\omega = \omega_0 \sqrt{1 - \frac{1}{4Q^2}}$

$$\Rightarrow g(t) = e^{+t/\tau} (A\cos(\omega t) + B\sin(\omega t))$$

$$\ddot{g} + \frac{\omega_0}{Q} \dot{g} - \omega_0^2 g = 0$$



$$\ddot{g} \; + \; rac{\omega_0}{Q} \dot{g} \;$$
 – $\omega_0^2 g = 0$

$$T_0 = 100 \text{ s}$$

