

Ondes sonores dans les fluides

Bande passante de l'oreille (sons audibles) : $20 \, Hz$ à $20 \, kHz$. Ultrasons : $20 \, kHz$ à quelques MHz. Vitesse du son dans l'air (conditions usuelles) : $c_{son} \approx 340 \, ms^{-1}$ ($c_{lumière} = 300 \, 000 \, 000 \, ms^{-1}$).

Onde acoustique = 5 inconnues : $\mu(M,t)$, P(M,t), \vec{v} (M,t).

5 équations : Euler, conservation masse, relation thermodynamique.

Ondes sonores dans les solides : cf. chapitre « Ondes » (modélisation masses + ressorts).

Équations fondamentales des ondes sonores - Équation de propagation

E Approximation acoustique

- **Écoulement parfait** (i.e. évolution isentropique caractérisée par χ_s).
- Pesanteur négligée.
- Onde sonore = **perturbation de l'état de repos** (champs μ_0 , P_0 , $\vec{v} = \vec{0}$ uniformes):

$$\mu(M,t) = \mu_0 + \mu_I(M,t), \ P(M,t) = P_0 + P_I(M,t) \ \text{et} \ \vec{v} \ (M,t) = \vec{v}_1(M,t)$$

où $\langle \mu_1 \rangle_T = \langle P_1 \rangle_T = \langle \vec{v}_1 \rangle_T = 0$ (moyennes temporelles nulles) et μ_1/μ_0 , P_1/P_0 et v_1/c sont des infiniment petits du même ordre (linéarisation des équations) ainsi que leurs dérivées spatiales et temporelles.

 P_1 , également notée \tilde{P} , est la *surpression* (par rapport à la valeur au repos P_0) ou **pression** acoustique (≥ 0 ou ≤ 0).

L'approximation acoustique est donc une approximation linéaire d'ordre 1 (DL₁) en μ_1 , P_1 , \vec{v}_1 et leurs dérivées.

Équations fondamentales dans l'approximation acoustique

Équation d'Euler :	$\mu_0 \frac{\partial \vec{v_1}}{\partial t} = -\overrightarrow{grad} P_1$	(couplage P_I / \vec{v}_1).
--------------------	--	--------------------------------

Conservation de la masse :
$$\frac{\partial \mu_1}{\partial t} + \mu_0 div \, \vec{v}_1 = 0 \qquad \text{(couplage } \mu_1 / \vec{v}_1 \text{)}.$$

Évolution isentropique :
$$\mu_1 = \mu_0 \chi_s P_1$$
 (couplage μ_1 / P_1).

Où χ_S est le **coefficient de compressibilité isentropique** défini par $\chi_S = \frac{1}{\mu} \left(\frac{\partial \mu}{\partial P} \right)_S$.

E Équations de propagation des ondes sonores

$$\Delta P_1 - \frac{1}{c^2} \frac{\partial^2 P_1}{\partial t^2} = 0$$

$$\Delta \vec{v}_1 - \frac{1}{c^2} \frac{\partial^2 \vec{v}_1}{\partial t^2} = 0$$
Avec $c = \frac{1}{\sqrt{\mu_0 \chi_s}}$

ᇋ Célérité des ondes sonores – Ordres de grandeur

$$c_{solide} = \sqrt{\frac{E}{\mu}}$$
 (E: module d'Young). $c_{fluide} = \frac{1}{\sqrt{\mu_0 \chi_s}}$. $c_{acier} \approx 4000 \text{ ms}^{-1}$ $c_{eau} \approx 1400 \text{ ms}^{-1}$ $c_{air} \approx 340 \text{ ms}^{-1}$

Gaz parfait: loi de Laplace $\Rightarrow \chi_S = \frac{1}{\gamma P} \Rightarrow c_{GP} = \sqrt{\frac{\gamma R T_0}{M}}$.

Ondes sonores planes progressives

Surface d'onde = lieu des points dans le même état vibratoire (mêmes valeurs de P, μ, \vec{v}).

Ondes planes (O.P.)

Les surfaces d'onde sont des plans orthogonaux à la direction de propagation fixe \vec{u} .

Ondes planes progressives (O.P.P.) dans la direction \vec{u}

Onde de la forme
$$f(\vec{u} \cdot \vec{r} - ct)$$
 ou $F\left(t - \frac{\vec{u} \cdot \vec{r}}{c}\right)$

où $\vec{r} = OM$ et \vec{u} = vecteur unitaire de la direction de propagation.

Rq: l'onde plane est un modèle valable loin des sources, elle présente un caractère non physique étendue à tout l'espace (extensions spatiale et temporelle infinies donc énergie infinie).

Ex : O.P.P. se propageant selon \vec{e}_x : $P_1(M, t) = f(x-ct)$

Ondes planes progressives harmoniques (O.P.P.H.) dans la direction \vec{u}

Onde de la forme
$$P_1(M,t) = A\cos(\omega t - \vec{k} \cdot \vec{r} + \varphi)$$
 où $\vec{k} = k\vec{u}$ et $k = \frac{\omega}{c} = \frac{2\pi}{\lambda}$.

L'analyse de Fourier permet d'écrire une O.P.P périodique de période $T = 2\pi/\omega$ quelconque

comme une somme d'O.P.P.H. de pulsations
$$\omega_n = n\omega$$
:
$$\sum_{n=1}^{\infty} A_n \cos(\vec{k}_n \cdot \vec{r} - \omega_n t + \varphi_n)$$
.

Solution générale de l'équation de d'Alembert = superposition d'O.P.P.H. de pulsations ω_n multiples de la pulsation fondamentale ω (pulsation du signal périodique considéré).

En formalisme complexe :
$$\frac{\partial}{\partial t} = j\omega$$
 et $\vec{\nabla} = -j\vec{k}$: $\begin{vmatrix} \frac{\partial}{\partial x} = -jk_x \\ \frac{\partial}{\partial y} = -jk_y \end{vmatrix}$. $\frac{\partial}{\partial y} = -jk_z$

Rappels: $\overrightarrow{grad}P = \overrightarrow{\nabla}P$, $div \vec{v} = \overrightarrow{\nabla} \cdot \vec{v}$, $\Delta P = \overrightarrow{\nabla}^2 P$, $\overrightarrow{rot} \vec{v} = \overrightarrow{\nabla} \wedge \vec{v}$, $\Delta P = div(\overrightarrow{grad}P)$

Structure des O.P.P. – Impédance acoustique

Les ondes sonores sont *longitudinales* : $\vec{v}_1 /\!/ \vec{u}$.

 $P_1(M, t) = \mu_0 c v_1(M, t) : P_1 \text{ et } v_1 \text{ vibrent en phase } (P_1 \text{ et } v_1 \text{ proportionnels}).$

Impédance acoustique :
$$Z_{OPP} = \frac{P_1}{v_1}$$
 $Z_{OPP} = \mu_0 c = \sqrt{\frac{\mu_0}{\chi_S}}$ selon \vec{e}_x $Z_{OPP} = -\mu_0 c = -\sqrt{\frac{\mu_0}{\chi_S}}$ selon $-\vec{e}_x$

Comprendre : l'impédance est une notion caractérisant le *couplage entre une cause et un effet*, elle s'exprime en fonction des *caractéristiques du milieu*.

En électricité (circuit R, L, C) : Z = U/I = Z(R, L, C).

En électromagnétisme (câble coaxial) : $Z_C = v(x,t)/i(x,t) = \pm \sqrt{\Lambda/\Gamma}$.

En acoustique : $Z_{OPP} = P_1/v_1 = \pm \mu_0 c = \pm \sqrt{\mu_0 / \chi_S}$.

« Cause » = tension (ddp), pression. « Effet » = courant, vitesse.

Ordres de grandeur:

	μ_0	С	Z_{OPP}
Air	1,3 kgm ⁻³	340 ms ⁻¹	440 u.s.i
Eau	10^{3}kgm^{-3}	1400 ms ⁻¹	10 ⁶ u.s.i

E Aspects énergétiques

Puissance échangée à travers une surface S

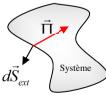
Puissance mécanique échangée par l'onde sonore avec le fluide à travers une surface S:

 $\mathcal{P} = \iint_{S} \vec{\Pi} \cdot d\vec{S} \text{ (en } W) \quad \text{où } \vec{\Pi} = P_{1}\vec{v}_{1} \text{ (en } Wm^{-2}) \text{ vecteur densit\'e volumique de flux de puissance.}$

Puissance reçue par un système de volume V limité par une surface S:

$$\mathcal{P}_{\substack{entrante \\ ext \to V}} = \iint_{S} \vec{\Pi} \cdot d\vec{S}_{\text{int}}$$

$$\mathcal{P}_{\substack{\text{sortante} \\ V \to ext}} = \iint_{S} \vec{\Pi} \cdot d\vec{S}_{ext} = -\mathcal{P}_{\substack{\text{entrante} \\ ext \to V}}$$



 $d\vec{S}$ orientée vers l'intérieur du système \Leftrightarrow flux entrant, *puissance entrante* : convention thermodynamique (convention du porte-monnaie) ;

 $d\vec{S}_{ext}$ orientée vers l'extérieur du système \Leftrightarrow flux sortant, *puissance sortante* (théorème de Green-Ostrogradski par exemple).

Densité volumique d'énergie

Densité volumique d'énergie:
$$e = \frac{1}{2}\mu_0 v_1^2 + \frac{1}{2}\chi_S P_1^2 \qquad \text{(en } Jm^{-3}\text{)}.$$

La densité e comporte un terme d'énergie cinétique de la particule fluide et un terme d'élasticité lié à la pression (lié à l'énergie interne via le travail des forces de pression car q = 0 : écoulement parfait).

Équation locale de conservation de l'énergie

Bilan local d'énergie:
$$\frac{\partial e}{\partial t} + div\vec{\Pi} = 0 \qquad \text{(en } Wm^{-3}\text{)}.$$

Onde plane progressive harmonique : valeurs moyennes

Pour une OPPH
$$v_1 = v_{1m} \cos(\omega t - kx)$$
 : $\langle e \rangle = \frac{1}{2} \mu_0 v_{1m}^2$ et $\langle \vec{\Pi} \rangle = \frac{1}{2} \mu_0 c v_{1m}^2 \vec{u} = \frac{1}{2} Z v_m^2 \vec{u}$.

On retrouve le caractère non physique des OPP car e = cte (énergie infinie dans tout l'espace). $\langle \Pi \rangle = \frac{1}{2} Z v_{1m}^2$ est de la forme $\langle P = \frac{1}{2} Z R i_m^2 \rangle$.

Intensité sonore – Décibels acoustiques

Intensité énergétique ou éclairement :
$$\mathcal{E} = \left\langle \frac{d\mathcal{P}}{dS} \right\rangle = \left\langle \left\| \vec{\Pi} \right\| \right\rangle = \left\langle \left\| P_1 \vec{v}_1 \right\| \right\rangle$$
 (en Wm^{-2}).

Écart en dB entre 2 sons d'intensité énergétique $\langle \Pi \rangle$ et $\langle \Pi_{_0} \rangle$: $I - I_{_0} = 10 \log \frac{\langle \Pi \rangle}{\langle \Pi_{_0} \rangle}$.

On fixe par convention un niveau de référence $I_0 = 0 \ dB$ pour $\langle \Pi_0 \rangle = 10^{-12} \ \mathrm{Wm}^{-2}$.

L'intensité (ou niveau) sonore en dB est alors : $I = 10 \log \frac{\langle \Pi \rangle}{\langle \Pi_0 \rangle}$

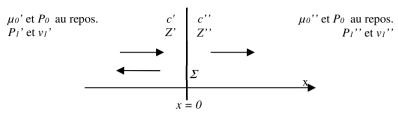
Ordres de grandeur

ares de grandear					
	Deuil d'audition	Forte intensité	Seuil douleur		
Intensité énergétique $\mathcal{E} = \langle \Pi \rangle$ en Wm^{-2}	10 ⁻¹² Wm ⁻²	10 ⁻⁴ Wm ⁻²	1 Wm ⁻²		
Amplitude surpression P_{lm} en Pa	3 10 ⁻⁵ Pa	0,3 Pa	30 Pa		
Intensité sonore <i>I</i> en <i>dB</i>	0 dB	80 dB	120 dB		

Réflexion et transmission d'une O.P.P. sous incidence normale

El Conditions aux limites - Notations - Méthode

Deux fluides différents (air/eau par exemple) séparés par une interface Σ en x = 0.



Dans l'approximation acoustique $v_1 \le c$, le déplacement δx de l'interface est tel que $\delta x \le \lambda$, il peut donc être négligé : l'interface reste confondue avec le plan x = 0.

- ✓ Théorème de la résultante dynamique appliqué à un élément dS de l'interface $\Rightarrow P_1'(0,t) = P_1''(0,t)$; continuité de la surpression à l'interface.
- ✓ Deux fluides non miscibles (i.e. paroi imperméable, ex : air/eau) ⇒ $v_1'(0,t) = v_{\Sigma} = v_1''(0,t)$: continuité de la vitesse normale (= vitesse, ici) à l'interface.

Expressions des champs:

$$\begin{split} & \underline{v}_{\!_{1}} \, ' = \underline{A}_{\!_{i}} e^{j(\omega t - k'x)} + \underline{A}_{\!_{r}} e^{j(\omega t + k'x)} \\ & \underline{P}_{\!_{1}} \, ' = Z \, ' \underline{A}_{\!_{i}} e^{j(\omega t - k'x)} - Z \, ' \underline{A}_{\!_{r}} e^{j(\omega t + k'x)} \\ \end{split} \qquad \qquad \underline{P}_{\!_{1}} \, '' = Z \, ' \underline{A}_{\!_{i}} e^{j(\omega t - k''x)} \\ \underline{P}_{\!_{1}} \, '' = Z \, '' \underline{A}_{\!_{i}} e^{j(\omega t - k''x)} \end{split} .$$

O Coefficients de réflexion et de transmission en amplitude

Pour la vitesse :
$$r_{v} = \frac{\underline{A}_{r}}{\underline{A}_{i}} = \frac{Z' - Z''}{Z' + Z''}$$
 et $t_{v} = \frac{\underline{A}_{t}}{\underline{A}_{i}} = \frac{2Z'}{Z' + Z''}$

Pour la pression : $t_{p} = -r_{v}$ et $t_{p} = \frac{Z''}{Z'} t_{v}$

Rq:

- Conditions aux limites en x = 0 et expressions des champs $\Rightarrow t_v = 1 + r_v$ et $t_P = 1 + r_P$.
- t_P et $t_V > 0$ donc ondes incidente et transmise en phase.
- $Z' = Z'' \Rightarrow r_v = r_p = 0$ et $t_v = t_P = 1$: impédances adaptées (pas d'ondes réfléchies), utile en échographie (utilisation d'un gel « antireflet »).
- $Z' \rightarrow \infty$ (mur en x = 0) \Rightarrow ondes stationnaires avec nœud de vitesse et ventre de pression sur le mur.

O Coefficients de réflexion et de transmission en puissance

$$\begin{split} \left\langle \vec{\Pi} \right\rangle &= \frac{1}{2} Z v_{m}^{2} \vec{u} \implies \left\langle \Pi_{i} \right\rangle = \frac{1}{2} Z' A_{i}^{2}, \ \left\langle \Pi_{r} \right\rangle = -\frac{1}{2} Z' r_{v}^{2} A_{i}^{2} \text{ et } \left\langle \Pi_{t} \right\rangle = \frac{1}{2} Z'' t_{v}^{2} A_{i}^{2}. \\ R &= \frac{\left\langle \mathbf{\mathcal{P}}_{r} \right\rangle}{\left\langle \mathbf{\mathcal{P}}_{i} \right\rangle} = r_{v}^{2} = \left(\frac{Z' - Z''}{Z' + Z''} \right)^{2} \quad \text{et} \quad T &= \frac{\left\langle \mathbf{\mathcal{P}}_{r} \right\rangle}{\left\langle \mathbf{\mathcal{P}}_{i} \right\rangle} = \frac{Z''}{Z'} t_{v}^{2} = \frac{4Z' Z''}{\left(Z' + Z''\right)^{2}} \end{split}$$

Conservation de la puissance sonore à l'interface : R + T = 1 ($\Rightarrow \mathcal{P}_r + \mathcal{P}_t = \mathcal{P}_t$).

Ondes sphériques harmoniques

En écrivant l'équation d'onde en *coordonnées sphériques*, on montre que le champ de surpression $P_l(r,t)$ peut s'écrire :

$$\checkmark$$
 $P_1(r,t) = \frac{A}{r} \cos(\omega t - kr + \varphi)$, onde sphérique divergente;

$$\checkmark$$
 $P_1(r,t) = \frac{A}{r} \cos(\omega t + kr + \varphi)$, onde sphériques convergente.

Avec $k = \omega/c$.

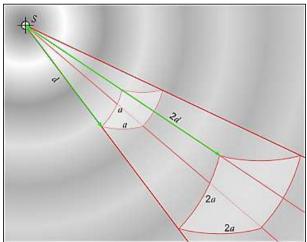
L'amplitude de la surpression est donc proportionnelle à 1/r pour une onde sphérique.

De l'équation d'Euler, on peut déduire par intégration l'expression du champ des vitesses \vec{v}_1 . On peut alors calculer $\vec{\Pi} = P_1 \vec{v}_1$ puis sa moyenne temporelle.

$$\langle \vec{\Pi} \rangle = \frac{A^2}{2\mu_0 cr^2} \vec{e}_r$$
 proportionnel à 1/r² (résultat connu pour les ondes sphériques).

Rq : cette formule est analogue à celle obtenue pour les ondes *planes* : $\left\langle \left\| \vec{\Pi} \right\| \right\rangle = \frac{1}{2} \frac{P_{lm}^2}{Z}$.

La puissance sonore moyenne à travers une sphère de centre O et de rayon r est alors indépendante du rayon r: $\langle \mathcal{P}(r) \rangle = \frac{2\pi A^2}{\mu_0 c} = \text{constante (conservation du flux)}.$



D'après http://fr.wikipedia.org/wiki/Intensit%C3%A9_acoustique#mediaviewer/File:Champ.svg

On comprend intuitivement que le produit P_{1m}^2 (proportionnel à $1/r^2$) x surface (proportionnelle à r^2) soit constant.