
Programmation dynamique - Ordonnancement de tâches pondérées -
Enoncé

Définition du problème - Weighted Interval Scheduling
On dispose d’une liste de tâches Ti pour 1 ≤ i ≤ n.
Chaque tâche est définie par :

• di l’instant de début de la tâche Ti ;
• fi l’instant de fin de la tâche Ti ;
• vi la valeur associée à la tâche Ti.

Hypothèse : f1 ≤ f2 ≤ … ≤ fn (si nécessaire, on trie la liste des tâches selon ce critère).
Critère de compatibilité entre deux tâches : deux tâches compatibles ne se chevauchent pas.

Objectif ✔ : déterminer le sous-ensemble de tâches compatibles pour lequel la valeur totale est maximum.

Applications
• Planning d’activités plus ou moins valorisées en maximisant la valorisation totale (une seule activité à la fois).
• Planification de réservation d’une ressource par différents utilisateurs en maximisant la durée d’utilisation (une

seule réservation à la fois).

Bibliothèques
from _validation import *
from random import randint, seed
import numpy as np
import matplotlib.pyplot as plt

Analyse de l’exemple - Ebauche d’un algorithme
Si on aborde le problème avec une stratégie descendante (i.e. en partant de la tâche T8), deux cas se présentent :

• soit T8 fait partie de la solution optimale ;
• soit T8 ne fait pas partie de la solution optimale.

Dans le premier cas, la tâche suivante à considérer est T5 (T6 et T7 sont incompatibles avec T8 car elles terminent
après le début de T8) et on itère le procédé avec T5.
Dans le second cas, on itère ce même raisonnement avec T7 (tâche précédent T8).
L’analyse amène donc à définir un critère de compatibilité entre tâches.

Définition
On note c(i) le nombre de tâches compatibles avec la tâche Ti.
c(i) est donc le nombre de tâches se terminant avant que la tâche i ne commence ou encore c(i) est le plus grand index
k < i tel que la tâche fk ≤ di.
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✏ Sur l’énoncé papier de ce TP, remplir la ligne c(i) dans le tableau ci-dessous (correspondant à l’exemple ci-dessus)
en commençant par i = 8 conformément à la stratégie descendante.

i 1 2 3 4 5 6 7 8
c(i)

Fonction c(i) : nombre de tâches compatibles avec la tâche Ti

✏ Compléter le code de la fonction c(i) (lignes 10, 13, 14 et 15) en considérant qu’une variable globale nommée
taches a été définie sous la forme d’une liste de tuples de la forme :
taches = [(d1, f1, v1), (d2, f2, v2), , (dn, fn, vn)] supposée triée par valeurs f croissantes.

def c(i):
"""
Paramètres :

i : tâche numéro i (int)

Renvoie :
k : plus grand index k < i tel que Tk soit compatible avec Ti (i.e fk <= di)

"""
global taches # Facultatif
di = # Début de la tâche Ti
# On cherche la plus grande valeur de k tq fk <= di donc boucle avec k croissant
k = 0 # Initialisation de k
while

k
return

# Test c(i) avec exemple ci-dessus (valeurs vi fixées arbitrairement à None pour ce test)
taches = [(1, 4, None), (3, 5, None), (0, 6, None), (4, 7, None), (3, 8, None), (5, 9, None), (6, 10, None), (8, 11, None),]
print([c(i)+1 for i in range(len(taches))]) # c(i)+1 pour correspondre avec la numérotation T1 à T8 (0 <= i <= 7)

Génération aléatoire des tâches et tri
On cherche à construire une liste de tâches (liste de tuples) de la forme :
taches = [(0, 0, 0), (d1, f1, v1), (d2, f2, v2),…, (dn, fn, vn)] (notations définies ci-dessus).
avec di < fi entiers (compris entre 0 et 24).

Tâches aléatoires

✏ randint

Cf. TP Sac à dos module random

# Penser à l'aide en ligne

help(randint)
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✏ Compléter le code (lignes 5, 8, 11, 13 et 15).

def tirage(n, vmax):
taches = [(0, 0, 0)] # Initialisation
# Tirages aléatoires pour Ti : di, fi et vi
for i in range(n):

di , fi =
# En cas d'égalité di = fi, on renouvelle le tirage de fi
while di == fi:

fi =
# On doit avoir fi > di
if di > fi: # Ne pas renouveler de tirage, solution simple !

di, fi =
# Valeur de la tâche Ti avec 1 <= vi <= vmax
vi =
# Une tâche Ti est définie comme un tuple Ti = (di, fi, vi)
taches.append( )

return taches

# Test
n = 8 # Nombre de tâches
vmax = 5 # Valeur maximum pour une tâche
taches = tirage(n, vmax)
print(taches)

Tri des tâches par instant final croissant

✏ L.sort et sorted(L)

Cf. Tp Sac à dos

# Penser à l'aide en ligne

help(list.sort) # help(sort) provoque un message d'erreur car sort est une méthode => préciser list.sort

help(sorted) # Le nom de la fonction suffit sans autre précision

✏ lambda

Cf. Tp Sac à dos

On souhaite que la liste des tâches soit triée par instant final fi croissant.

✏ Compléter le code (ligne 2).

# Fonction renvoyant l'instant final correspondant à une tâche Ti
instant_final = lambda Ti:

# Tri de la liste taches en prenant comme critère de tri l'instant final
taches.sort(key=instant_final) # Tri EN PLACE (i.e. la liste est MODIFIEE)

# Test
print(taches)
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1 Algorithme : récursivité descendante avec choix binaire

Rappel objectif : déterminer le sous-ensemble de tâches compatibles pour lequel
la valeur totale est maximum.
Cette valeur maximale ou optimale recherchée est notée opt(n) où n est le nombre total de tâches.

Notation
On note opt(i) la valeur optimale (i.e. maximum ici) du problème restreint aux tâches T1 à Ti.

On considère le sous-problème restreint aux tâches T1 à Ti.
Deux cas se présentent pour le calcul de opt(i).
1er cas : la valeur optimale est obtenue avec la tâche i
⇒ les tâches n°c(i + 1), c(i + 2), sont incompatibles (par définition, c(i) est l’index de la dernière tâche
compatible avec Ti).
⇒ la valeur optimale est donc vi + valeur optimale pour les tâches compatibles précédentes, c’est-à-dire
vi + opt(c(i)) où c(i) < i est le nombre de tâches compatibles avec la tâche i.
2nd cas : la valeur optimale est obtenue sans la tâche i
⇒ la valeur optimale doit donc être recherchée pour l’ensemble de toutes les tâches précédentes (autrement
dit, c’est la solution optimale du sous-problème restreint aux tâches T1 à Ti−1) ; cette valeur est opt(i− 1).

Finalement : opt(i) =
{

0 si i = 0
max (vi + opt(c(i)), opt(i− 1)) sinon

1.1 Fonction opt(i) « naïve » récursive
✏ Ecrire la fonction opt(i) à partir de cet algorithme

opt(i) =

{
0 si i = 0
max (vi + opt(c(i)), opt(i− 1)) sinon

def opt(i):
"""
Paramètres :

i : tâche numéro i (int)

Renvoie :
la plus grande valeur pour la somme des vi pour les tâches compatibles

"""
global taches

# Test opt(i)
n = 4
vmax = 3
taches = tirage(n, vmax)
taches.sort(key=instant_final) # Tri EN PLACE (i.e. la liste est MODIFIEE)
print(taches)
print(opt(n))

💻 👁 Arborescence des appels - Exécuter et observer.

from rcviz import viz

# Pour information, le symbole @ fait référence à un décorateur (hors programme)
@viz
def opt(i):

global taches
if i == 0: return 0
return max(taches[i][2] + opt(c(i)), opt(i-1))

taches = [(0, 0, 0), (3, 6, 3), (14, 18, 1), (12, 20, 1), (9, 22, 1)]
opt(n)
# Le décorateur nommé "viz" permet de modifier la fonction opt (ici en lui ajoutant la méthode callgraph())
opt.callgraph()
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Questions
1. Cet algorithme possède-t-il la propriété de sous-structure optimale ?
2. Les sous-problèmes se chevauchent-ils ?

# Réponses
"""
1/

2/

"""

# Valider cette cellule

def opt(i): # Redéfinie pour supprimer le décorateur qui permettait de visualiser les appels
global taches
if i == 0: return 0
return max(taches[i][2] + opt(c(i)), opt(i-1))

2 fonction opt_mem(i) récursive descendante utilisant la mémoïsation
✏ Ecrire une fonction opt_mem(i) récursive descendante utilisant la mémoïsation.

Rappel de la stratégie :
• on utilise un dictionnaire de la forme {j : opt(j)} avec 0 ≤ j ≤ i pour stocker les valeurs calculées pour chaque

tâche Ti ;
• avant de calculer un terme, on vérifie qu’il n’existe pas déjà dans le dictionnaire ;
• à chaque nouveau calcul, la résultat est stocké dans le dictionnaire.

Remarque : cette fonction renvoie la valeur maximum correspondant à une sélection de tâches parmi toutes les tâches
mais ne fournit pas la sélection en question.
opt(i) =

{
0 si i = 0
max (vi + opt(c(i)), opt(i− 1)) sinon

def opt_mem(i): # Fonction "d'encapsulation"
"""
Paramètres :

i : tâche numéro i (int)

Renvoie :
la plus grande valeur pour la somme des vi pour les tâches compatibles

"""
memo = # Dictionnaire pour la fonction opt_mem_aux
def opt_mem_aux(i):

global taches
# Si le resultat cherché est déjà présent, on utilise le dictionnaire
if

return
# Sinon, on fait le calcul et on mémorise la valeur dans le dictionnaire
memo[i] =
return

return opt_mem_aux(i)

# Test opt_mem

taches = [(0, 0, 0), (17, 19, 7), (5, 17, 1), (20, 24, 4), (11, 22, 2), (12, 18, 4)]
taches.sort(key=instant_final) # Tri EN PLACE (i.e. la liste est MODIFIEE)
n = len(taches) - 1
print(taches)

print(f'Fonction "naïve", vmax = {opt(n)}')
print(f'Mémoïsation, vmax : {opt_mem(n)}')
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3 Fonction opt_asc(i) itérative ascendante
✏ Proposer une fonction opt_asc(i) utilisant un algorithme itératif ascendant avec stockage des valeurs dans un
dictionnaire.

Rappel de la stratégie : la fonction remplit un dictionnaire de la forme {j : opt(j)}.

def opt_asc(i):
"""
Paramètres :

i : tâche numéro i (int)

Renvoie :
la plus grande valeur pour la somme des vi pour les tâches compatibles

"""
# Initialisation du dictionnaire
memo =
# Construction ascendante du dictionnaire
for k in range( ):

memo[k] =
# Dernière valeur = valeur cherchée
return

# Test opt_asc

taches = [(0, 0, 0), (17, 19, 7), (5, 17, 1), (20, 24, 4), (11, 22, 2), (12, 18, 4)]
taches.sort(key=instant_final) # Tri EN PLACE (i.e. la liste est MODIFIEE)
n = len(taches) - 1
print(taches)

print(f'Fonction "naïve", vmax = {opt(n)}')
print(f'Mémoïsation, vmax : {opt_mem(n)}')
print(f'Itérative, vmax : {opt_asc(n)}')

Remarque : ces algorithmes permettent d’obtenir la valeur maximale mais pas les tâches sélectionnées pour atteindre
cette valeur.

4 Tâches sélectionnées
La fonction taches_selectionnees détermine l’ordonnancement des tâches à effectuer, elle renvoie la liste des index
des tâches choisies dans la liste des tâches, par ordre croissant.
La première partie de l’algorithme repose sur celui de la fonction opt_asc dans lequel on mémorise dans second un
dictionnaire, nommé dico_choix, la décision concernant la tâche k (optimise la valeur ou non) : dico_choix[k] = True
ou False.
On pourrait penser qu’il suffit de sélectionner les tâches associées à la valeur True dans le dictionnaire mais ce raison-
nement est incorrect car on ne sait pas encore à l’étape i si une étape ultérieure ne conduit pas à une valeur supérieure
(autrement dit, une tâche sélectionnée à l’étape i peut être abandonnée au cours des évaluations ultérieures si elle
devient moins intéressante).
Dans la seconde partie, l’algorithme parcourt donc le tableau à partir de la fin, en sautant de choix optimal en choix
optimal.
opt(i) =

{
0 si i = 0
max (vi + opt(c(i)), opt(i− 1)) sinon

✏ Compléter les lignes 16, 17, 19, 20, 24, 25, 28 et 30 du script ci-dessous.

def taches_selectionnees(i):
"""
Paramètres :

i : tâche numéro i (int)

Renvoie :
L : liste des index des tâches choisies dans la liste des tâches, par ordre croissant

"""
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# ____________ Première partie (basée sur opt_asc)
memo = {0:0} # Dictionnaire pour le calcul de la valeur optimale
dico_choix = {} # Dictionnaire pour la mémorisation des décisions
# Remplissage des dictionnaires
for k in range(1, i+1):

s = taches[k][2] + memo[c(k)]
if s > memo[k-1]: # La tâche k est sélectionnée

memo[k] =
dico_choix[k] =

else: # La tâche k n'est pas sélectionnée
memo[k] =
dico_choix[k] =

# ____________ Seconde partie (parcours des choix optimaux à partir du dernier)
L = [] # Initialisation de la liste des tâches optimales
k = # Initialisation boucle while : index de la dernière tâche optimale
while k > 0: # Parcours du dictionnaire des choix

if dico_choix[k] == : # La tâche k est sélectionnée
L.append(k) # Ajout de la à la liste des tâches choisies
k = # SAUT à la tâche compatible précédente

else: # La tâche k n'est pas sélectionnée
k # On consulte la tâche précédente

L.reverse() # Car la liste L est remplie de la dernière tâche à la première
return L

Remarques

1. Il est possible de n’utiliser qu’un seul dictionnaire de la forme {k : (opt(k), True ou False)}.
2. Pour éviter L.reverse(), au lieu de L.append(k) faire L = [k] + L (ajout par l’avant).
3. Pour comprendre le fonctionnement, il peut être intéressant de visualiser dico_choix :

• soit instruction print(dico_choix) juste avant return ;
• soit return L, dico_choix.

# Test taches_selectionnees

n = 10
vmax = 4
#seed(2)
taches = tirage(n, vmax)
taches.sort(key=instant_final) # Tri EN PLACE (i.e. la liste est MODIFIEE)

vmax = opt_asc(n)
L = taches_selectionnees(n)

print(taches)
print(f'Itérative, vmax : {vmax}')
print("Index des tâches : ", L)
print("Tâches : ", [taches[i] for i in L])

5 Tests - Représentation graphique des résultats
💻 Exécuter le code suivant afin de pouvoir effectuer les représentations graphiques.
def graphe(n, vmax):

...

💡 Après la première exécution, modifier la valeur de la graine (seed(valeur)) du générateur pseudo-aléatoire afin pour
obtenir des exécutions différentes.
seed(2)
n = 10 # Nombre de tâches
vmax = 4 # Valeur maximum pour une tâche

graphe(n, vmax)

7


