Programmation dynamique - Ordonnancement de taches pondérées -
Enoncé

Définition du probléme - Weighted Interval Scheduling

On dispose d’une liste de taches T; pour 1 < i < n.
Chaque tache est définie par :

e d; I'instant de début de la tache T; ;

e f; 'instant de fin de la tache T;;

e v; la valeur associée a la tache T;.

o Ts | Temps
0 1 2 3 4 5 6 7 8 9 10 11

Hypothése : f1 < fo < .. < f, (si nécessaire, on trie la liste des taches selon ce critére).
Critére de compatibilité entre deux taches : deux tdches compatibles ne se chevauchent pas.

Objectif & : déterminer le sous-ensemble de taches compatibles pour lequel la valeur totale est maximum.

Applications
e Planning d’activités plus ou moins valorisées en maximisant la valorisation totale (une seule activité a la fois).
e Planification de réservation d’une ressource par différents utilisateurs en maximisant la durée d’utilisation (une
seule réservation a la fois).

Bibliotheques

from _validation import *

from random import randint, seed
import numpy as np

import matplotlib.pyplot as plt

Analyse de ’exemple - Ebauche d’un algorithme

Si on aborde le probléme avec une stratégie descendante (i.e. en partant de la tache Tg), deux cas se présentent :
e soit Ty fait partie de la solution optimale;
e soit Ty ne fait pas partie de la solution optimale.
Dans le premier cas, la tdche suivante & considérer est Ts (Tg et T7 sont incompatibles avec Ty car elles terminent
apres le début de Tg) et on itére le procédé avec Ts.
Dans le second cas, on itére ce méme raisonnement avec 77 (tdche précédent Tg).
L’analyse ameéne donc a définir un critére de compatibilité entre taches.

Définition
On note ¢(4) le nombre de taches compatibles avec la tache T;.

¢(i) est donc le nombre de taches se terminant avant que la tache ¢ ne commence ou encore (%) est le plus grand index
k < i tel que la tache fi < d;.

Ts
] Ty i
P Ts ' Temps
0 1 2 3 4 5 6 7 8 9 10 11

/ Sur I’énoncé papier de ce TP, remplir la ligne ¢(¢) dans le tableau ci-dessous (correspondant a 'exemple ci-dessus)
en commengant par ¢ = 8 conformément a la stratégie descendante.

vt 1121345678
()

Fonction ¢(i) : nombre de taches compatibles avec la tache T;

/ Compléter le code de la fonction c(i) (lignes 10, 13, 14 et 15) en considérant qu’une variable globale nommée
taches a été définie sous la forme d’une liste de tuples de la forme :
taches = [(d1, f1, v1), (d2, 2, v2), , (dn, fn, vn)] supposée triée par valeurs f croissantes.

def c(i):
mnn
Paramétres :
i : tdche numéro i (int)
Renvoie :

k : plus grand indexr k < i tel que Tk soit compatible avec Ti (i.e fk <= di)

mmwn

global taches # Facultatif
di = # Début de la tdche T1
On cherche la plus grande valeur de k tq fk <= di donc boucle avec k croissant
k=0 # Intttalisation de k
while
k
return

Test c(i) avec exemple ci-dessus (valeurs vi fizées arbitrairement & None pour ce test)
taches = [(1, 4, None), (3, 5, None), (0, 6, None), (4, 7, None), (3, 8, None), (5, 9, None), (6, 10, None
print([c(i)+1 for i in range(len(taches))]) # c(i)+1 pour correspondre avec la numérotation T1 a4 T8 (0 <=

Génération aléatoire des taches et tri
On cherche a construire une liste de taches (liste de tuples) de la forme :

taches = [(0,0,0), (d1, f1,v1), (da, f2,V2), «, (dn, frn, vn)] (notations définies ci-dessus).
avec di < fi entiers (compris entre 0 et 24).

Taches aléatoires

Cf. TP Sac a dos module random

Penser a l'aide en ligne

help(randint)

/ Compléter le code (lignes 5, 8, 11, 13 et 15).

def tirage(n, vmax):

taches = [(0, 0, 0)] # Initialisation

Tirages aléatoires pour Tt : di, fi et we

for i in range(n):
di , fi =
En cas d'égalité di = fi, on renouvelle le tirage de f<
while di == fi:

fi =

On doit avoir fi > di
if di > fi: # Ne pas renouveler de tirage, solution simple !

di, fi =
Valeur de la tdche Ti avec 1 <= vi <= vmazx
vi =
Une tache Ti est définie comme un tuple Ti = (di, fi, vi)
taches.append()

return taches

Test

n=28 # Nombre de taches

vmax = 5 # Valeur maxzimum pour une tdche
taches = tirage(n, vmax)

print (taches)

Tri des taches par instant final croissant

/ L.sort et sorted(L)

Cf. Tp Sac a dos

Penser a l'aide en ligne

help(list.sort) # help(sort) provoque un message d'erreur car sort est une méthode => préciser list.sort

help(sorted) # Le nom de la fonction suffit sans autre précision

Cf. Tp Sac a dos

On souhaite que la liste des taches soit triée par instant final f; croissant.

¢/ Compléter le code (ligne 2).

Fonction renvoyant l'instant final correspondant d une tache T7
instant_final = lambda Ti:

Trt de la liste taches en prenant comme critére de trt l'instant final
taches.sort(key=instant_final) # Tr¢ EN PLACE (i.e. la liste est MODIFIEE)

Test
print (taches)

1 Algorithme : récursivité descendante avec choix binaire

Rappel objectif : déterminer le sous-ensemble de taches compatibles pour lequel
la valeur totale est maximum.
Cette valeur maximale ou optimale recherchée est notée opt(n) ot n est le nombre total de taches.

Notation
On note opt(i) la valeur optimale (i.e. maximum ici) du probléme restreint aux taches Th a T;.

On considere le sous-probléeme restreint aux taches 71 a T;.

Deux cas se présentent pour le calcul de opt (7).

ler cas : la valeur optimale est obtenue avec la tache i

= les taches n°c(i + 1), ¢(i + 2), sont incompatibles (par définition, c(7) est l'index de la derniére tache
compatible avec T;).

= la valeur optimale est donc wv; + valeur optimale pour les tdches compatibles précédentes, c’est-a-dire
v; + opt(c(i)) ol ¢(i) < i est le nombre de tdches compatibles avec la tache i.

2nd cas : la valeur optimale est obtenue sans la tache i

= la valeur optimale doit donc étre recherchée pour ’ensemble de toutes les taches précédentes (autrement
dit, c’est la solution optimale du sous-probléme restreint aux taches T & T;_1); cette valeur est opt(i — 1).

Finalement : opt(i) = 0 sii=0
HOPH) = max (v + opt(e(i)), opt(i — 1)) sinon

1.1 Fonction opt(i) « naive » récursive

¢ Ecrire la fonction opt (i) & partir de cet algorithme

opt(i) = 0 sit=0
PR =\ max (v; + opt(c(i)), opt(i — 1)) sinon
def opt(i):
Paramétres :
i : tdche numéro i (int)
Renvoie :

la plus grande valeur pour la somme des vi pour les tdches compatibles
mmn

global taches

Test opt ()
n =4
vmax = 3
taches = tirage(n, vmax)

taches.sort(key=instant_final) # Tri EN PLACE (i.e. la liste est MODIFIEE)
print (taches)

print (opt(n))

M @& Arborescence des appels - Exécuter et observer.

from rcviz import viz

Pour information, le symbole @ fait référence 4 un décorateur (hors programme)
Qviz

def opt(i):
global taches
if i == 0: return O

return max(taches[i][2] + opt(c(i)), opt(i-1))

taches = [(0, 0, 0), (3, 6, 3), (14, 18, 1), (12, 20, 1), (9, 22, 1)]

opt(n)

Le décorateur nommé "viz" permet de modifier la fonction opt (ici en lui ajoutant la méthode callgraph(,
opt.callgraph()

Questions
1. Cet algorithme posséde-t-il la propriété de sous-structure optimale ?

2. Les sous-problémes se chevauchent-ils ?

Réponses

nmnn

1/

2/

nmnn

Valider cette cellule

def opt(i): # Redéfinie pour supprimer le décorateur qui permettait de visualiser les appels
global taches
if i == 0: return O
return max(taches[i][2] + opt(c(i)), opt(i-1))

2 fonction opt__mem(i) récursive descendante utilisant la mémoisation
¢/ Ecrire une fonction opt_mem(i) récursive descendante utilisant la mémoisation.

Rappel de la stratégie :

e on utilise un dictionnaire de la forme {j : opt(j)} avec 0 < j < i pour stocker les valeurs calculées pour chaque

tache T; ;

e avant de calculer un terme, on vérifie qu’il n’existe pas déja dans le dictionnaire;

e a chaque nouveau calcul, la résultat est stocké dans le dictionnaire.
Remarque : cette fonction renvoie la valeur maximum correspondant & une sélection de taches parmi toutes les taches
mais ne fournit pas la sélection en question.

. sit=0
opt(i) = { max (v; + opt(c(i)),opt(i — 1)) sinon

def opt_mem(i): # Fonction "d'encapsulation”
mmnn
Paramétres
1 : tdche numéro 1 (int)
Renvoie :

la plus grande valeur pour la somme des vi pour les tdches compatibles
mmn
memo = # Dictionnaire pour la fonction opti_mem_auzx
def opt_mem_aux(i):

global taches

St le resultat cherché est déja présent, on utilise le dictionnaire

if

return

Sinon, on fait le calcul et on mémorise la wvaleur dans le dictionnaire

memo [1] =

return
return opt_mem_aux(i)

Test opt_mem

taches = [(0, 0, 0), (17, 19, 7), (5, 17, 1), (20, 24, 4), (i1, 22, 2), (12, 18, 4)]
taches.sort (key=instant_final) # Tr¢ EN PLACE (i.e. la liste est MODIFIEE)

n = len(taches) - 1

print (taches)

print(f'Fonction "naive", vmax = {opt(n)}')
print (f'Mémoisation, vmax : {opt_mem(n)}')

3 Fonction opt__asc(i) itérative ascendante

¢/ Proposer une fonction opt_asc(i) utilisant un algorithme itératif ascendant avec stockage des valeurs dans un
dictionnaire.

Rappel de la stratégie : la fonction remplit un dictionnaire de la forme {j : opt(j)}.

def opt_asc(i):

mmnn

Paramétres :
i : tdche numéro i (int)
Renvoie :

la plus grande valeur pour la somme des vi pour les tdches compatibles

nmmnn

Inttialisation du dictionnaire

memo =
Construction ascendante du dictionnaire
for k in range():

memo [k] =
Derniére valeur = wvaleur cherchée
return

Test opt_asc

taches = [(0, 0, 0), (17, 19, 7), (5, 17, 1), (20, 24, 4), (11, 22, 2), (12, 18, 4)]
taches.sort(key=instant_final) # Tri EN PLACE (%i.e. la liste est MODIFIEE)

n = len(taches) - 1

print (taches)

print(f'Fonction "naive", vmax = {opt(n)}')
print (f 'Mémoisation, vmax : {opt_mem(n)}')
print (f'Itérative, vmax : {opt_asc(n)l}')

Remarque : ces algorithmes permettent d’obtenir la valeur maximale mais pas les taches sélectionnées pour atteindre
cette valeur.

4 TAaches sélectionnées

La fonction taches_selectionnees détermine I'ordonnancement des taches a effectuer, elle renvoie la liste des index
des taches choisies dans la liste des taches, par ordre croissant.

La premiere partie de ’algorithme repose sur celui de la fonction opt_asc dans lequel on mémorise dans second un
dictionnaire, nommé dico_ choix, la décision concernant la tiche k (optimise la valeur ou non) : dico_ choix[k] = True
ou False.

On pourrait penser qu’il suffit de sélectionner les taches associées a la valeur True dans le dictionnaire mais ce raison-
nement est incorrect car on ne sait pas encore a ’étape i si une étape ultérieure ne conduit pas a une valeur supérieure
(autrement dit, une tache sélectionnée & I’étape i peut étre abandonnée au cours des évaluations ultérieures si elle
devient moins intéressante).

Dans la seconde partie, I’algorithme parcourt donc le tableau & partir de la fin, en sautant de choix optimal en choix
optimal.

opt(i)—{ 0) . S}ZZO
max (v; + opt(c(i)),opt(i — 1)) sinon

/Compléter les lignes 16, 17, 19, 20, 24, 25, 28 et 30 du script ci-dessous.

def taches_selectionnees(i):
mnn
Paramétres :
i : tdche numéro i (int)

Renvoie :

L : liste des index des tdches chotisies dans la liste des tdches, par ordre croissant
mmn

$#_ Premiére partie (basée sur opt_asc)
memo = {0:0} # Dictionnaire pour le calcul de la valeur optimale
dico_choix = {} # Dictionnaire pour la mémorisation des décisions

Remplissage des dictionnaires

for k in range(1l, i+1):

s = taches[k][2] + memol[c(k)]

if s > memo[k-1]: # La tdche k est sélectionnée
memo [k] =
dico_choix[k] =

else: # La tdche k n'est pas sélectionnée
memo [k] =

dico_choix[k]

o Seconde partie (parcours des choix optimauz d partir du dernier)
L =1] # Initialisation de la liste des tdches optimales
k = # Initialisation boucle while : index de la derniére tdche optimale
while k > O: # Parcours du dictionnaire des choix
if dico_choix[k] == : # La tdche k est sélectionnée
L.append (k) # Ajout de la d la liste des tdches chotisies
k = # SAUT a4 la tache compatible précédente
else: # La tdche k n'est pas sélectionnée
k # On consulte la tdche précédente
L.reverse() # Car la liste L est remplie de la derniére tdche d la premiére
return L
Remarques

1. 11 est possible de n’utiliser qu'un seul dictionnaire de la forme {k : (opt(k), True ou False)}.
2. Pour éviter L.reverse(), au lieu de L.append(k) faire L = [k] + L (ajout par lavant).
3. Pour comprendre le fonctionnement, il peut étre intéressant de visualiser dico_ choix :

e so0it instruction print(dico_ choix) juste avant return;

e soit return L, dico_ choix.

Test taches_selectionnees

n = 10

vmax = 4

#seed (2)

taches = tirage(n, vmax)

taches.sort(key=instant_final) # Tri EN PLACE (%i.e. la liste est MODIFIEE)

vmax = opt_asc(n)
L = taches_selectionnees(n)

print (taches)

print(f'Itérative, vmax : {vmaxl}')
print("Index des téches : ", L)
print("Taches : ", [taches[i] for i in L])

5 Tests - Représentation graphique des résultats
M Exécuter le code suivant afin de pouvoir effectuer les représentations graphiques.

def graphe(n, vmax):

Q Apres la premiére exécution, modifier la valeur de la graine (seed(valeur)) du générateur pseudo-aléatoire afin pour
obtenir des exécutions différentes.

seed(2)
n = 10 # Nombre de tdches
vmax = 4 # Valeur maxzimum pour une tdche

graphe(n, vmax)

