Mécanique en référentiel non galiléen

Théories physiques — Domaines de validité

De fagon simplifiée, on distingue différentes théories en fonction de leur G
domaine de validité :
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8 Mécanique classique Newtonienne (au sens non relativiste) : c
Référentiel
& Un référentiel est un de référence (par rapport auquel le mouvement sera décrit) muni d’une horloge.
8 En mécanique (i.e. non relativiste), le temps est : toutes les horloges synchronisées donnent le méme temps.

C’est pour cette raison qu’il ne sera plus fait mention d’horloges dans la suite.

& Un référentiel galiléen ou inertiel est un référentiel dans lequel
On démontre que tout référentiel en mouvement de translation rectiligne et uniforme par rapport a un référentiel galiléen est lui-
méme galiléen : il existe donc une infinité de référentiels galiléens.

Les lois de la mécanique sont par changement de référentiel galiléen : ce postulat constitue le principe de la relativité
galiléenne.
Dans un référentiel non galiléen ou non inertiel, qui est donc animé d’un mouvement par rapport a un référentiel galiléen,

il faut faire intervenir les forces d’inertie parfois appelées pseudo-forces car elles ne sont pas associées a une interaction entre le
corps étudié et un autre corps.

Q En pratique, un référentiel 1ié a un solide réel ne peut €tre qu'approximativement, localement et momentanément galiléen (cf. chapitre
sur le référentiel terrestre).

Position — Vitesse — Accélération

On considere un référentiel 2 en mouvement quelconque par rapport a un référentiel 2

Y
Soit M un point mobile par rapport a ces deux référentiels.
Les positions successives de M au cours du temps sont notées M(t;). o M
Reperes vs référentiels
. . Y 9 b b b z /
On note R un repere d’origine O dans et R’ un repere d’origine O’ dans 2°. 0 s
. .. . N , N o ., z ;
Q Il est possible de choisir n’importe quel repeére dans 2 (ou 2 ’) : repere cartésien lié au 0
référentiel, i.e. fixe par rapport au référentiel ou cylindrique ou sphérique, i.e. mobile par
rapport au référentiel. Il convient donc de bien distinguer repere et référentiel. J

@ En pratique, on choisit le repére de maniére a simplifier au maximum la description du mouvement dans le référentiel choisi (i.e.
diminuer au maximum le nombre de parameétres de position nécessaires pour définir le vecteur position).

Vecteurs position dans les deux référentiels

8 Le vecteur position du point mobile M dans un référentiel est défini a partir d’un point fixe quelconque dans de référentiel :

—_

OM (souvent noté 7 ) est le vecteur position de M dans et O'M est le vecteur position de M dans 2°.

@ Un vecteur (et donc une distance) est indépendant du référentiel dans lequel ses coordonnées sont exprimées.
Par contre, la trajectoire dépend du référentiel : les positions de M par rapport a O ou les positions de M par rapport a O’ ne dessinent
pas la méme courbe.

Vecteurs position dans les deux référentiels
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8 Vitesse du point M par rapport au référentiel 2

Vitesse du point M par rapport au référentiel 2’ :

Q Dans ces notations, et 2 sont appelés référentiels de définition ou référentiels de dérivation :

Par exemple, dans @ les vecteurs du repere R = (0, €., Ey , E,) sont indépendants du temps mais dans 2’ ce ne serait pas le cas en

général (réciproquement, les vecteurs du repere R’ = (0, é., Ey, ,€ ) sont indépendants du temps dans 2’ mais pas dans ).

/\ Ces notations sont impératives afin d’éviter toute ambigiiité.
Vecteurs accélération dans les deux référentiels

& Accélération du point M par rapport au référentiel 2

Accélération du point M par rapport au référentiel 2’ :

Point coincident — Mouvement d’entrainement d’un référentiel par rapport a un autre

& Point coincident a I'instant ¢ = t; : point P(¢;), 1ié au référentiel 2°, qui coincide avec le point mobile étudié M(t;).

Q Il s’agit d’un point, éventuellement virtuel, défini a chaque instant # , lié au référentiel 2°.

def
Autrement dit, par définition, la vitesse du point coincident dans le référentiel 2° est nulle : v(P/ 2)=0.

8 Mouvement d’entrainement 3t = t;:

&8 Vitesse (resp. accélération) d’entrainement :
On la note :

Ces définitions sont valables quel que soit le mouvement d’entrainement.
_ v (M) :
A a,(M) # gd—t en général (sauf dans le cas ou 2’ est en translation par rapport a Z).
/\ Remarque : il existe des formules permettant d’exprimer la vitesse et I’accélération d’entrainement en toute généralité mais ces
formules sont hors programme et leur utilisation est sanctionnée aux concours car les deux seuls cas au programme ne nécessitent
pas d’y recourir.

1¢ cas - R’ en translation rectiligne (uniforme ou non) par rapport a ®
Par définition d’un mouvement de translation, les vitesses par rapport a £ de tous les points du référentiel 2 ° sont égales a un
instant donné : le mouvement d’entrainement est donc défini par 1I’'un quelconque des points de 2, I’origine O’ par exemple.

solide en translation A
position position & l'instant (t)
initiale & @=a AB paralléle a A, B,
linstant (¢ ) et BC paralléle & B, Gy

a tout instant (t)

X0 | trajectoires identiques :
Ta=Tg=Tp=T Vo=V B

référence
Translation rectiligne (resp. circulaire) : les trajectoires des différents points sont des droites (resp. des cercles).
Translation rectiligne : v (M /2) /la (M /2) oM 02

Translation rectiligne uniformément accélérée : a,(M) =a(0'/ 8') = cte OMOZ'.

Translation rectiligne uniforme : v, (M) = v(0' /2" = ;t—é OM 02" et a,(M)= a0' /2= 0.

2" cqs - @ en rotation uniforme a la vitesse angulaire wpar rapport a un axe A fixe dans 2
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Le mouvement du point coincident doit étre décrit avec précision en fonction du paramétrage du probleme.
/\ Faire systématiquement un ou plusieurs schémas.

¢/ Exemple : pendule en rotation uniforme autour de I’axe Oz (I’angle & ne reste constant au cours du temps).
Représenter 1’allure de la trajectoire du point coincident sur le schéma.
Représenter 1’accélération d’entrainement sur le schéma.
Exprimer I’accélération d’entrainement en fonction des parametres de position du schéma et d’un vecteur unitaire # a définir.

PC

Mecanique_RNG_el.docx 3/4



Composition des vitesses et des accélérations

& Loi de composition des vitesses

V(M /®)= avec vV, (M)=v(P/®)=v(MOR'/R)
8 Loi de composition des accélérations
aM | @)= avec a,(M)=a(P/&)=aMOR'/®)
et oll Wy p = We,
accélération de ou accélération
Q Remarques importantes
» Mouvement de franslation
» A l'équilibre relatif i.e. lorsque le point M est a I’équilibre dans le référentiel 2°
> a. = 2&)D\7(M /E') = a, est ala vitesse dans 2’ = d,. est a la trajectoire.

Forces d’inertie dans un référentiel non galiléen

& Force d’inertie d’entrainement

& Force d’inertie de Coriolis :

Q La puissance de la force de Coriolis est nulle : elle ne travaille pas, son seul effet est donc de modifier la trajectoire (elle ne modifie
pas la norme de la vitesse, seulement sa direction).
Rq : autres forces de puissance nulle :

Conséquence — Classe des référentiels galiléens
Par définition, dans un référentiel galiléen 2°, les forces d’inerties sont nulles.

. a.= 0 [ le mouvement étudié =

2. d,(M)=0=

En conséquence tout référentiel en mouvement de
est lui-méme galiléen : il existe donc une infinité de référentiels galiléens.

Lois de la physique en référentiel non galiléen

2% loi de Newton — PFD — Loi de la quantité de mouvement... dans ®° non galiléen

Théoreme du moment cinétique par rapport a un point fixe O’ fixe dans @’ non galiléen
( dL, (M 1 =")

d j = Yy (D)4 (F)+ Ty (o) avee L, (M/R)=0MOp(M/R)=0M Omi(M/R)
t 2

Théoréme du moment cinétique par rapport a un axe A fixe dans @’ non galiléen

(dLA (M/2')

y j => () + 7, (f)+ M, (f) avec L, (M/Z)=L,(M/Z )M, et 00N
t 2'

Théoréme de la puissance mécanique dans ®’ non galiléen
dE(M | Z')

( dt
Théoréme de I’énergie mécanique dans @’ non galiléen AE (M / 2’) = ZW(fNC) + W(fie)

j :ZP(ch)‘“P(fie) avec E(M/g’):EC(M/z')+ZEP oll EC(M/QI):%mV(M/f')
.

Théoréme de la puissance cinétique dans ® ’ non galiléen
( dE.(M 1 2")

d j =2 P(H+2(f,) avec E(MIR)=E.(M/R)+Y E, ot E (M/R)=%mi(M/R)
t 2

Théoreme de I’énergie cinétique dans 8’ non galiléen AE, ( M/ 2') = z W(f) + W(f[_e)
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