
PC Arduino_tuto.docx 1/13

 Arduino - Initiation

Introduction aux microcontrôleurs

Arduino est la marque d'une plateforme de prototypage open-source qui permet aux utilisateurs de créer des objets électroniques

interactifs à partir de cartes électroniques équipées d’un microcontrôleur.

Un microcontrôleur est un circuit intégré qui intègre les éléments essentiels d'un ordinateur : processeur, unités périphériques et

interfaces d'entrées-sorties. Les microcontrôleurs se caractérisent par un plus haut degré d'intégration (taille réduite), une plus faible

consommation électrique et un coût réduit par rapport aux microprocesseurs polyvalents utilisés dans les ordinateurs personnels.

Un microcontrôleur peut être programmé pour analyser et produire des signaux électriques.

Ils sont utilisés dans les systèmes embarqués pour piloter des robots, dans les voitures, les avions, les récepteurs GPS, les

télécommandes, l'électroménager, les jouets, la téléphonie mobile, la domotique, etc.

Dans le cas d’Arduino, les langages de programmation utilisés sont C et C++.

Un IDE (environnement de Développement Intégré) Arduino permet d’écrire et de téléverser les programmes dans la mémoire ROM

du microcontrôleur (cf. ci-dessous).

Rq : Pyzo ou Spyder sont des IDE pour Python, VisualStudio est un IDE multi langages.

Le microcontrôleur des cartes Arduino utilise deux types de mémoires.

 Une mémoire morte (ROM, pour l'anglais read-only memory), une mémoire au contenu non volatile utilisée pour enregistrer

des informations qui doivent être conservées lorsque l'appareil qui les utilise n'est plus sous tension.

La carte Arduino utilise une EEPROM (Electrically-Erasable Programmable Read-Only Memory ou mémoire morte effaçable

électriquement et programmable) qui peut être facilement effacée et réécrite à l'aide d'un courant électrique.

C’est dans cette mémoire que seront stockés les programmes.

 Une mémoire vive (RAM acronyme anglais pour random-access memory), « mémoire à accès aléatoire » à accès rapide dans

laquelle peuvent être enregistrées des données volatiles.

La carte Arduino Uno - Brochage

La modulation PWM (Pulse Width Modulation en anglais) ou modulation de largeur d'impulsions (MLI en français) est une

technique utilisée pour synthétiser des signaux pseudo analogiques à l'aide de circuits numériques.

Instructions pour lire le signal appliqué à une broche :

 analogRead() sur une entrée analogique (A0 à A5) (tension délivrée par un capteur par exemple) ;

 digitalRead() sur une entrée numérique (D2, D4, D7, D8, D12, D13).

Instructions pour envoyer un signal à une broche :

 analogWrite() sur une broche numérique PWM simulant un signal analogique (D3, D5, D6, D9, D10, D11) ;

 digitalWrite() sur une broche numérique.

Définir le comportement d’une broche (entrée ou sortie) : pinMode(broche, mode) avec mode = INPUT ou OUTPUT.

Broches analogiques – Analog pins

→ analogRead()

Broches numériques - Digital pins

→ digitalRead(), digitalWrite()

Symbole ~ : broche PWM (D3, D5…)

→ analogWrite()

Alimentation

(sauf si USB)

USB : alimentation et

téléversement des programmes

Bouton Reset

PC Arduino_tuto.docx 2/13

Arduino IDE

Sélectionner le type de carte Arduino et le port sur lequel elle est connectée dans la liste déroulante « Select Board ».

Un programme Arduino est appelé « sketch » (parfois traduit par « croquis » ou « esquisse »), l’extension de fichier est .ino

Il est tapé dans la zone d’édition de l’interface, il doit être compilé (transformation du code source en fichier binaire) puis téléversé

 sur la carte.

Des informations sur le processus de compilation sont affichées dans l’onglet « Output » sous l’éditeur (éventuelles erreurs, statut final,

mémoire disponible…).

Sketchbook : programmes enregistrés sur l’ordinateur.

Board manager : packages nécessaires avec certaines cartes d’extension ajoutées sur la carte Arduino (WiFi,…).

Library manager : librairies/modules à utiliser pour les capteurs par exemple.

Serial moniter : visualisation du flux de données issu de la carte.

 Les instructions Serial.print() et Serial.println() permettent d’écrire dans le moniteur série.

Serial Plotter : visualisation de graphes.

Utilisation d’une carte avec un ordinateur

1. Brancher la carte et lancer l’IDE.

2. Sélectionner la carte et le port dans la liste déroulante (cf. ci-contre).

En cas de non détection, essayer de changer de port et de relancer l’IDE.

3. Créer un nouveau sketch (File / New Sketch) ou ouvrir un sketch enregistré (le dernier

utilisé est préchargé).

4. Taper ou modifier le code ; l’aide en ligne est abondante.

5. Compiler le code .

Si tout se passe bien un message s’affiche en blanc (sinon lire le message affiché en

rouge et remédier aux problèmes) :

6. Téléverser le code .

7. Cliquer sur l’icône du moniteur série ou sur l’onglet « Serial Monitor » s’il est déjà ouvert.

Verify / upload Open serial monitor

Open serial plotter

Sketchbook

Board manager

Library manager

Debugger
Instructions répétées en boucle (infinie)

Instructions d’initialisation

Select board and port

Search

Serial monitor

Editeur

Moniteur série

Utile en cas d’erreur de compilation :

Ligne et colonne de l’erreur (déplacer le curseur dans l’éditeur)

PC Arduino_tuto.docx 3/13

Mémento langage Arduino C++

void : en C++, le mot-clé void indique qu'une fonction ne renvoie pas de valeur (cf. autres exemples de fonctions page 11).

Les délimiteurs sont les accolades (analogue à l’indentation en python).

��� Erreur : Compilation error: expected '}' at end of input (par exemple).

Chaque instruction doit se terminer par un point-virgule (en python, uniquement pour séparer 2 instructions sur une même ligne).

��� Erreur : Compilation error: expected ';' before ….

Commentaires sur une seule ligne : // (# en python) ; multilignes /* … */ (""" … """ en python).

Noms de variables

Caractères utilisables : _, 0, 1, 2, ..., 9, A, B, ..., Z, a, b, ..., z (commence toujours par une lettre ou un tiret bas « _ »).

Types

Entiers : short (2 octets
15 15

2 2 1n
−− ≤ ≤ − , 16 bits) 215 = 32 768

unsigned short (2 octets
16

0 2 1n≤ ≤ −)

char (1 octet
7 7

2 2 1n
−− ≤ ≤ − , 8 bits) ('A' et 65 sont équivalents, codage ASCII)

byte (1 octet
8

0 2 1n≤ ≤ −)

int, unsigned int dépend du microcontrôleur (16 bits sur Arduino Uno)

long (4 octets
31 32

2 2 1n
−− ≤ ≤ − , 32 bits)

unsigned long (4 octets
32

0 2 1n≤ ≤ −)

bool ou boolean deux valeurs true ou false (sans majuscule au contraire de python)

Flottants : float (9,4039548.10-38 à 3,4028235.10+38, 32 bits) Ex : 1.5e-2

Chaînes : https://docs.arduino.cc/language-reference/en/variables/data-types/string/

Affectation
Comme en python, le symbole d’affectation est le signe égal : « = ».

Déclaration des variables et types

Dans le langage C le type et les variables doivent être déclarés.

��� Erreur : ‘nom_variable’ was not declared in this scope.

int i; // Déclaration sans affectation (l’affectation aura lieu plus loin dans le programme)
float pi = 3.14; // Déclaration et affectation simultanées
char c = 'a';

Opérateurs

+, -, *, /, % (reste division entière)

== (test d'égalité), != (test de différence), <, >, <=, >= (tests de comparaison)

! (négation),|| (ou), && (et)

Raccourcis

i=i+1; ⇔ i++; i=i-1; ⇔ i--;

a=a+b; ⇔ a+=b; a=a-b; ⇔ a-=b;

1

2

3

4

5

6

7

8

9

10

11

12

// Commentaire sur une ligne

void setup() {
// Initialisation : instructions exécutées une seule fois
Instruction1;
Instruction2;
}

void loop() {
// Instructions répétées en boucle infinie
Instruction3;
}

PC Arduino_tuto.docx 4/13

Instruction conditionnelle

if (conditions) {instructions}
else if (conditions) {instructions} (instruction else if facultative, peut être répétée)

else (conditions) {instructions} (instruction else facultative)

Rq : il existe une instruction conditionnelle multiple switch…case

Boucles
while (conditions) {instructions}
for (i=0;i<100;i=i+1) {instructions} (par exemple)

Rq : il existe une boucle do…while

Tableaux

La taille des tableaux doit être une constante.

type nom_tableau[dimension]
Exemples :

int liste[10];
float L[3] = {1.1, 2.2, 3.3};

Accès via l’indice/index (la numérotation commence à 0 comme en python) : nom_tableau[indice]

Directives de compilation

Une directive de compilation indique au compilateur de procéder à des opérations préalables au début de la compilation.

Ces directives se situent en tout début du programme source.

#include <fichier> // Inclure des librairies (analogue à import en python)

#include "fichier.h" // Autre syntaxe

#define alias valeur // Remplace alias par valeur

Exemple : #define capteur1 A0 analogue à const int capteur1 = A0 mais gain de mémoire avec define.

Const

Ce mot clé permet de définir une variable qui, une fois initialisée, ne pourra plus être modifiée.

Exemple :
Const float pi = 3.1415 ;
x = 2 * pi ;

Aide en ligne https://docs.arduino.cc/language-reference/

Fonctions https://docs.arduino.cc/language-reference/#functions

Variables https://docs.arduino.cc/language-reference/#variables

Structure https://docs.arduino.cc/language-reference/#structure

Transfert des données - Annexes techniques

Port série – Cf. Exemple 1

Un port série, également appelé port COM, est un type d'interface informatique qui permet la communication entre un ordinateur

et des périphériques externes. Il s'agit d'un port physique sur un ordinateur ou un appareil qui permet d'envoyer et de recevoir des

données bit par bit et séquentiellement sur un seul fil.

Ouverture et écriture dans le port série

Serial.begin(v) Ouvrir le port série et fixer la vitesse v de transmission (valeurs prédéfinies, cf. exemple 1).

Serial.print(s) Ecrire la chaîne s sur la ligne courante (à la suite de la dernière chaîne écrite si elle existe) ou sur

une nouvelle ligne sinon sans retour à la ligne.

Serial.println(s) Ecrire la chaîne s sur la ligne courante (à la suite de la dernière chaîne écrite si elle existe) ou sur

une nouvelle ligne sinon puis retour à la ligne.

Time

Il est parfois nécessaire d’indiquer au microcontrôleur un délai d’attente (entre une mesure et son traitement par exemple).

delay(n) Attendre n ms (millisecondes).

millis() Renvoie le nombre de millisecondes écoulées depuis que le sketch a été téléversé et exécuté.

Fichiers et caractères de codage « invisibles » – Cf. Exemple 2

Les fichiers comportent des caractères « invisibles » (on peut les visualiser dans un éditeur de texte tel que Notepad++).

Il s’agit par exemple des caractères qui provoquent un retour à la ligne, en python : \n (système Linux), \r\n (Windows), \r (Mac).

La bibliothèque python serial (https://pyserial.readthedocs.io/) permet de lire les lignes écrites dans le port série :

ligne = serial.Serial(port_serie, vitesse). readline() (lecture et stockage du résultat dans une variable nommée ligne).

Les données lues dans le port série sont au format binaire, ligne.decode("utf-8") permet de décoder ce format.

���	
 Ces informations sont utiles lorsqu’il s’agit de sauvegarder des données lues sur le port série dans un fichier texte.

PC Arduino_tuto.docx 5/13

���	
 Les exemples ci-dessous doivent être considérés comme des programmes élémentaires destinés à être assemblés afin de réaliser la

tâche souhaitée (on trouve de très nombreux exemples en ligne et/ou dans les exemples fournis avec l’IDE Arduino).

Chaque exemple illustre une fonctionnalité : communication, récupération des données, acquisition des données…

��
� Toujours procéder par étapes en testant le bon fonctionnement des programmes au fur et à mesure de l’avancement.

Exemple 1 - Ecrire dans le port série

���	
 Application : visualiser des données en cours d’acquisition (acquisitions réelles à suivre)

Le skectch suivant illustre la communication entre la carte Arduino et l’ordinateur via le port série (physiquement, via le câble

USB).

Serial.begin(v) Ouvrir le port série et fixer la vitesse v de transmission (valeurs prédéfinies, cf. ci-dessous).

Serial.print(s) Ecrire la chaîne s (ligne courante si existante ou nouvelle ligne sinon) sans retour à la ligne final.

Serial.println(s) Ecrire la chaîne s (ligne courante si existante ou nouvelle ligne sinon) puis retour à la ligne.

delay(n) Attendre n ms (millisecondes).

��� Vérifier que la vitesse de transmission indiquée dans le port série correspond à la vitesse indiquée dans le sketch sous peine

de ne rien voir s’afficher.

Exemple 2 - Ecrire des valeurs numériques dans le port série et les stocker dans un fichier via python

���	
 Application : visualiser des données en cours d’acquisition et les récupérer via python (simulation, acquisitions réelles à suivre)

Le skectch suivant écrit des lignes (destinées à être lues par un script python annexe et enregistrées dans un fichier) dans le port

série :

 - une ligne d'en-tête (intitulés des colonnes) ;

 - des lignes de données simulées (instant de mesure, valeur calculée à cet instant et numéro de la mesure).

Les lignes sont formatées au format csv : chaque colonne de données est séparée de la suivante par un ";".

Ces informations sont envoyées au port série et lues par un script python.

millis() Renvoie le nombre de millisecondes écoulées depuis que le sketch a été téléversé et exécuté.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

/*
 Exemple 1 - Ecrire dans le port série

*/

void setup() {
// Ouverture port série - vitesse transmission (en baud = bit/s)
Serial.begin(9600);
// Tant que le port série n’est pas prêt, attendre 100 ms
while (!Serial) {
 delay(100); // Attendre 100 ms
 }
}

void loop() {
Serial.print("Arduino "); // Affichages les uns …
Serial.print("tuto "); // … à la suite des autres (même ligne)
Serial.println("Hello world!"); // Affichage puis retour à la ligne
delay(1000); // Attendre 1000 ms
}

PC Arduino_tuto.docx 6/13

���	
 Ligne 37 : la boucle infinie n’exécutant aucune action permet d’interrompre le flux de données transmises au port série

(sinon l’envoi de la chaîne « Stop » est répété indéfiniment).

Programme Python

1. Téléverser le sketch sur la carte Arduino.

2. Fermer le moniteur série Arduino (ne pas déconnecter la carte du port USB).

3. Exécuter le programme python : les données lues doivent s’afficher dans le shell.

��� L'onglet "Serial Monitor" doit rester fermé pour que python puisse ouvrir le port série.

Erreur python : serial.serialutil.SerialException: could not open port 'COM3': PermissionError(13, 'Accès refusé.', None, 5)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

int t0; // Instant initial, début des mesures (en ms)
int ti; // Instant mesure courante (n°i) (en ms)
float t; // Durée calculée en s : t = (ti-t0)/1000.0
int cpt; // Compteur (n° mesure courante)
int tMax = 5000; // Durée de l'acquisition en ms
float mesure_capteur; // Valeur calculée simulant une mesure via un capteur

void setup() {
 Serial.begin(115200);
 while (!Serial) {
 delay(100);
 }
 // En-tête futur fichier CSV (séparateurs colonnes ";") (script python annexe)
 Serial.println("ti (s);Capteur (V);Numero mesure;");
}
void loop() {
 cpt = 0;
 t0 = millis();
 ti = t0;
 while ((ti-t0) <= tMax) { // Boucle de « mesure »
 delay(100); // délai de 100 ms entre les mesures
 cpt += 1; // N° mesure
 ti = (millis()-t0); // Temps écoulé (en ms)
 t = (ti-t0)/1000.0; // Temps écoulé (en s)
 mesure_capteur = 20 * t + 100;

 // Formatage au format CSV dans le moniteur série (« ; » entre colonnes)
 Serial.print(t); // 1ère colonne de données
 Serial.print(";"); // Séparateur de colonnes
 Serial.print(mesure_capteur); // 2ème colonne de données
 Serial.print(";"); // Séparateur de colonnes
 Serial.println(cpt); // 3ème colonne de données
 }
 // Fin de la boucle while simulant les mesures
 Serial.println("Stop"); // A ce signal, le script python ferme le fichier.
 // Boucle infinie sans action : plus rien n'est envoyé sur le port série.
 while (true) {;}
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

import serial
import time

Communication
port_serie = 'COM3' # Cf. Arduino IDE (port sélectionné)
bauds = 115200 # Cf. sketch arduino : Serial.begin(bauds)
Enregistrement des mesures
dossier = "" # Dossier courant (dossier de ce fichier python)
nom_fichier = "exemple2.txt" # A personnaliser
chemin = dossier + nom_fichier

ps = serial.Serial(port_serie, bauds) # Ouverture du port série
fichier = open(chemin, "w+") # Ouverture du fichier en écriture
while True: # Boucle "infinie"
 ligne = ps.readline() # Lecture d'une ligne sur le port série
 #print(ligne) # Débogage (fin de ligne = \r\n => 2 sauts)
 ligne = ligne[:-1] # Traitement (suppression \n fin de ligne)
 ligne = ligne.decode("utf-8") # readline -> binaire, conversion
 if 'Stop' in ligne: # Message d’arrêt défini dans sketch Arduino
 break # Sortie de la boucle while
 print(ligne) # Vérification visuelle dans le shell
 fichier.write(ligne) # Ecriture de la ligne dans le fichier
fichier.close() # Fermeture du fichier
ps.close() # Fermeture du port série

PC Arduino_tuto.docx 7/13

Exemple 3 – Acquisition d’un flux de données analogiques - analogRead()

https://docs.arduino.cc/built-in-examples/basics/ReadAnalogVoltage/

���	
 Application : enregistrer un flux ininterrompu de données analogiques

On applique sur la broche A0 de la carte Arduino la tension uCB entre les pattes B et C d’un potentiomètre soumis à la tension

uAB = 5 V. On fait varier cette tension manuellement en agissant sur le potentiomètre rotatif.

analogRead(pin) Lire la valeur binaire sur la broche pin (A0 à A5), cf. page 1.

���������� Convertisseur analogique numérique (CAN ou ADC pour analog-to-digital-converter en anglais) n bits : une grandeur analogique

appliquée au CAN est discrétisée sur 2n valeurs (de 0 à 2n -1).

La carte Arduino UNO est équipée d’un CAN 10 bits : on dispose donc de 210 = 1024 valeurs, de 0 à 1023, pour représenter la

grandeur analogique appliquée sur une broche. La fonction analogRead() renvoie la valeur binaire issue du CAN.

Il faut donc convertir la valeur binaire en volts dans le cas envisagé en sachant que la tension appliquée au potentiomètre est 5 V.

Schéma du circuit

La broche utilisée est la broche A0, on applique une tension au potentiomètre (10 kΩ) grâce aux broches 5V et GND de la carte.

Sketch

���	
 La conversion valeur binaire / volts est effectuée ligne 16 (proportionnalité).

��� Ligne 16 : bien écrire 1023.0 et 5.0 afin que ces nombres soient traités comme des flottants

Remarque : le flux est ininterrompu, on verra dans d’autres exemples comment déclencher et interrompre le flux de mesures.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

int U_binaire; // "Tension" lue : valeur renvoyée par analogRead() entre 0 et 1023
float U_Volts; // Tension vraie en volts

void setup() {
 Serial.begin(115200);
 while (!Serial) {
 delay(100);
 }
}

void loop() {
 // Lecture de la tension analogique appliquée sur la broche A0 de l'Arduino
 U_binaire = analogRead(A0);

 // Conversion en Volts (analogique de 0 à 5 V  numérique de 0 à 1023)
 U_Volts = U_binaire / 1023.0 * 5.0;

 Serial.println(U_Volts);

 delay(500); // Utile pour ralentir le flux de données
}

uCB

C

A

A B

C

B

PC Arduino_tuto.docx 8/13

Exemple 4 – Acquisition de données numériques - digitalRead()

https://docs.arduino.cc/built-in-examples/basics/DigitalReadSerial/

���	
 Application : enregistrer un flux ininterrompu de données numériques

Bouton poussoir :

- lorsque le bouton est relâché, la patte C du bouton est reliée à B donc à la terre via la résistance R, la valeur LOW = 0 est alors

lue par une broche numérique ;

- lorsque le bouton est enfoncé, la patte C du bouton est reliée au potentiel 5V en A, la valeur lue par la broche numérique

correspond alors à la valeur HIGH = 1.

pinMode(pin, mode) Configurer la broche pin en entrée (mode = INPUT) ou en sortie (mode = OUTPUT).

digitalRead(pin) Lire la valeur booléenne sur la broche pin (2, 4, 7, 8, 12, 13).

Schéma du circuit

La broche utilisée est la broche 2.

Sketch

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

int boutonPoussoir = 2; // Nom de variable : bouton poussoir connecté broche 2
int etatBouton;

void setup() {
 Serial.begin(115200);
 while (!Serial) {
 delay(100);
 }
 // Configure la broche 2 = boutonPoussoir en entrée (INPUT)
 pinMode(boutonPoussoir, INPUT);
}

void loop() {
 // Lecture de la broche numérique
 etatBouton = digitalRead(boutonPoussoir);

 Serial.println(etatBouton);
 delay(500);
}

Bouton

poussoir

R = 10 kΩ

C

A

B

PC Arduino_tuto.docx 9/13

Exemple 5 – Sortie numérique PWM simulant un signal analogique - analogWrite()

https://docs.arduino.cc/built-in-examples/basics/Fade/

���	
 Application : générer un signal pseudo-analogique

Modulation de largeur d’impulsion (schéma ci-contre) : en faisant varier le rapport cyclique

(durée du niveau haut / durée du niveau bas) des impulsions, on fait varier la valeur moyenne

du signal.

C’est cette valeur moyenne qui simule un signal analogique. Le rapport cyclique pouvant

varier rapidement, la valeur moyenne peut également évoluer au cours du temps et simuler un

signal analogique variable dans le temps.

On fait varier la luminosité d’une LED en utilisant une sortie numérique PWM à modulation

de largeur d’impulsion.

analogWrite(pin, niveau) Ecrire la valeur niveau sur la broche pin (~3, ~5, ~6, ~9, ~10, ~11 PWM = symbole ~).

 analogWrite() accepte des valeurs entre 0 et 255.

Schéma du circuit

La broche PWM utilisée est la broche ~9.

Sketch

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

int led = 9; // Nom de variable : n° de la broche PWM connectée à la LED
int intensite = 0; // Niveau de luminosité
int variationI = 5; // Pas = ∆Ι de variation de l'intensité

void setup() {
 // Configure la broche 9 = led en sortie (OUTPUT)
 pinMode(led, OUTPUT);
}

void loop() {
 // Fixe le niveau de luminosité de la led en écrivant ce niveau à la broche 9
 analogWrite(led, intensite);

 // Modifie la luminosité à chaque boucle
 intensite = intensite + variationI;

 // Modifie le sens de variation lorsque les bornes sont atteintes
 if (intensite <= 0 || intensite >= 255) {
 variationI = -variationI;
 }
 delay(30);
}

R = 220 Ω

LED

PC Arduino_tuto.docx 10/13

Exemple 6 – analogRead() - analogWrite()

https://docs.arduino.cc/built-in-examples/analog/AnalogInOutSerial/

���	
 Application : générer un signal pseudo-analogique à partir d’un autre signal analogique

Cet exemple effectue une synthèse des exemples 3 et 5 et reprend le même matériel.

Le potentiomètre 10 kΩ (simulant ici un capteur) va permettre de fixer le niveau de luminosité de la LED.

analogRead() renvoie une valeur dans l’intervalle [0, 1023].

analogWrite() accepte des valeurs dans l’intervalle [0, 255].

La fonction map(brocheEntréeAnalogique, 0, 1023, 0, 255) permet de convertir les valeurs issues d’une broche d’entrée

analogique renvoyant des valeurs comprises entre 0 et 1023 en valeurs « compressées » dans l’intervalle 0-255.

Sketch

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

const int analogInPin = A0; // Entrée broche analogique connectée au potentiomètre
const int analogOutPin = 9; // Sortie broche PWM analogique connectée à la LED

int sensorValue = 0; // Valeur lue sur la broche du potentiomètre
int outputValue = 0; // Valeur écrite sur la broche de la LED

void setup() {
 Serial.begin(115200);
 while (!Serial) {
 delay(100);
 }
}

void loop() {
 sensorValue = analogRead(analogInPin); // Lecture broche entrée
(capteur)

 // Définition des intervalles de variations
 outputValue = map(sensorValue, 0, 1023, 0, 255);

 analogWrite(analogOutPin, outputValue); // Ecriture broche sortie (LED)

 // Affichage dans le moniteur série
 Serial.print("Capteur = ");
 Serial.print(sensorValue);
 Serial.print("\t sortie = ");
 Serial.println(outputValue);

 delay(300);
}

R
 =

 2
2

0
 Ω

PC Arduino_tuto.docx 11/13

Exemple 7 – Acquisition de données analogiques et entrées clavier – Fonctions renvoyant un résultat ou non

���	
 Principe : enregistrer un signal analogique point par point avec entrées de données au clavier.

Le sketch ci-dessous permet de réaliser l’acquisition de grandeurs (analogiques ou numériques) en contrôlant l’acquisition au

clavier :

- soit pour entrer des données au clavier pour une mesure difficile à effectuer via un capteur ;

- soit pour interrompre l’acquisition et effectuer un réglage entre deux mesures.

Par ailleurs, les acquisitions et les sorties sont regroupées dans deux fonctions (non indispensable mais données à titre d’exemple

afin d’illustrer la structure de programmes complexes).

Sketch

���	
 A la ligne 2, #define est une directive de compilation (cf. page 4).

���	
 A la ligne 21, on définit une fonction lecture admettant deux paramètres et renvoyant une valeur (syntaxe avec type sans void).

 A la ligne 27, on définit une fonction ecriture admettant deux paramètres et ne renvoyant aucune valeur (void sans type).

 L’ordre d’écriture des fonctions est sans importance.

���	
 A la ligne 15, la boucle est interrompue tant que rien n’est entré au clavier dans la zone de saisie (copie d’écran ci-dessous).

Après validation, les lignes 16 et 17 sont exécutées et la boucle recommence.

 Lignes 15 et 28 des conversions sont effectuées car les données transitant par le port série sont des chaînes (lecture et écriture).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

// Un seul capteur dans cet exemple : entrée analogique A0
#define capteurPin A0 // Broche Arduino utilisée

float capteurValeur; // Variable de stockage de la valeur capteur
float entreeClavier; // Données clavier issues du port série

void setup() {
 Serial.begin(115200);
 while (!Serial) {;}
 Serial.println("\nEntrée clavier;Capteur"); // Colonnes (en-tête fichier)
 }

void loop() {
 if (Serial.available() > 0) { // Si données dans le port série
 entreeClavier = Serial.parseFloat(); // Conversion données port série
 capteurValeur = lecture(capteurPin); // Lecture capteur
 ecriture(entreeClavier, capteurValeur); // Ecriture dans le port série
 }
}

float lecture(int broche) {
 float valeurMesuree = analogRead(broche) / 1023.0 * 5.0; // Conversion
 delay(2); // delai (ms) pour laisser le CAN réagir
 return valeurMesuree;
}

void ecriture(float c, float v) {
 Serial.print(c);
 Serial.print(";");
 Serial.println(v);
}

Zone saisie clavier

PC Arduino_tuto.docx 12/13

������� Application : mesure de pression (capteur Elab-PA) et de volume (clavier).

Carte Educaduino (Arduino Mega) avec capteur de pression absolue :

Le volume est lu sur la seringue et la valeur sera entrée au clavier.

Le capteur de pression absolue Elab-PA renvoie sur la broche A9 une valeur de type float codée sur 10 bits donc comprise dans

l’intervalle [0.0, 1023.0] correspondant à une pression (en Pa) dans l’intervalle [20 000, 400 000] (i.e. entre 200 et 4000 hPa).

Il faut donc définir une fonction permettant de calculer la pression réelle P à partir de la valeur mesurée V :

P aV b= + où
max min

max min

P P
a

V V

−
=

−
 et

max max
b P aV= − avec Pmax = 400000, Pmin = 20000, Vmax = 1023.0, Vmin = 0.0.

Ecrire le croquis (ou esquisse) permettant d’entrer les valeurs de volume au clavier et de mesurer la pression avec le capteur et

d’afficher les données dans le moniteur série.

Puis récupérer ces données via python, tracer le produit PV en fonction de V. La loi de Mariotte est-elle vérifiée ?

PC Arduino_tuto.docx 13/13

Exemple 8 – Niveaux d’intensité lumineuse – Utilisation d’une photodiode (BPW 34)

Fonctionnement d’une photodiode

En bleu, les caractéristiques I(U) de la photodiode (cf.

convention récepteur sur le graphe) pour différentes

valeurs Ei de l’éclairement (ou intensité lumineuse).

En vert les caractéristiques du dipôle connecté à la

photodiode (montage indiqué pour les deux quadrants

inférieurs).

On note RL la résistance dite de charge (Load en anglais).

Dans le cadran supérieur droit, la photodiode se comporte

comme une diode « simple ».

On distingue deux modes de fonctionnement utiles :

 en cellule solaire (générateur), la diode non

polarisée (VA > VK donc U > 0) débite dans la

résistance de charge RL qui effectue la conversion

courant / tension (les deux droites en vert tracées

dans ce cadran ont pour équation R

L

U
I

R
= − avec

UR = U, cf. schéma) ;

 en mode photodiode, la diode est polarisée en inverse (VK > VA donc U < 0) grâce au générateur de f.e.m. U0 (intensité I est de

l’ordre du µA), l’intensité électrique I est alors proportionnelle à l’éclairement lumineux E (le dipôle connecté aux bornes de la

photodiode a pour caractéristique
0

L

U U
I

R

+
= −).

Montage pratique en mode photodiode

On démontre facilement que 2

1

1
S L R

R
U R I

R
= +

 
 
 

.

Ordres de grandeur :

R1 = 1 kΩ, R2 = 22 kΩ (amplification)
R3 = 1 kΩ, R4 = 10 kΩ (pont permettant de fixer U0)

RL = 1 à 10 kΩ

��� Avec Arduino, ajuster R2 et/ou RL de façon à ce que US < 5 V !

Valeurs optimales lorsque le bruit n’est pas gênant (RL assez

grand) et US aussi grand que possible pour l’éclairement le plus

fort mais inférieur à 5 V impérativement pour mesurer US avec

Arduino.

������� Application : vérification de la linéarité (I ∝ E)

Imaginer un montage avec deux LED permettant de vérifier la linéarité du montage (sans Arduino dans un premier temps).

Etablir un protocole précis et faire un schéma du dispositif.

+

-

S

US

R1

U
0

R2
RL

R3 R4 VCC = +15 V

I
R

I
R

