Arduino - Initiation

Introduction aux microcontroleurs

Arduino est la marque d'une plateforme de prototypage open-source qui permet aux utilisateurs de créer des objets électroniques
interactifs a partir de cartes électroniques équipées d’un microcontréleur.

Un microcontréleur est un circuit intégré qui integre les éléments essentiels d'un ordinateur : processeur, unités périphériques et
interfaces d'entrées-sorties. Les microcontroleurs se caractérisent par un plus haut degré d'intégration (taille réduite), une plus faible
consommation électrique et un cofit réduit par rapport aux microprocesseurs polyvalents utilisés dans les ordinateurs personnels.

Un microcontroleur peut étre programmé pour analyser et produire des signaux électriques.
Ils sont utilisés dans les systemes embarqués pour piloter des robots, dans les voitures, les avions, les récepteurs GPS, les
télécommandes, 1'électroménager, les jouets, la téléphonie mobile, la domotique, etc.

Dans le cas d’ Arduino, les langages de programmation utilisés sont C et C++.

Un IDE (environnement de Développement Intégré) Arduino permet d’écrire et de téléverser les programmes dans la mémoire ROM
du microcontréleur (cf. ci-dessous).

Rq : Pyzo ou Spyder sont des IDE pour Python, VisualStudio est un IDE multi langages.

Le microcontrdleur des cartes Arduino utilise deux types de mémoires.

v' Une mémoire morte (ROM, pour l'anglais read-only memory), une mémoire au contenu non volatile utilisée pour enregistrer
des informations qui doivent étre conservées lorsque l'appareil qui les utilise n'est plus sous tension.
La carte Arduino utilise une EEPROM (Electrically-Erasable Programmable Read-Only Memory ou mémoire morte effacable
électriquement et programmable) qui peut étre facilement effacée et réécrite a I'aide d'un courant électrique.
C’est dans cette mémoire que seront stockés les programmes.

v' Une mémoire vive (RAM acronyme anglais pour random-access memory), « mémoire a acces aléatoire » a acces rapide dans
laquelle peuvent étre enregistrées des données volatiles.

La carte Arduino Uno - Brochage

USB : alimentation et
Alimentation téléversement des programmes
(sauf si USB) |

MAXIMUM current per

I/0 pin is 28mA Bouton Reset

MAXIMUM current per
+3.3V pin 1s 58mA

Micro 12C

o PCS
PC4
. " AREF
[o)
@EEN ees
wicro @ECLIED o
—
e &« e
B Power [iy] Power Input
+5V @I o
Power Output (oo] @ETHE ree
M Ground VIN @) A THEGHAZED PD7 Broches numériques - Digital pins
@I eos ~ digitalRead(), digital Write()
AB I I:’ c !- PDS
pel ([a1 @ o
pe3 [Az D3 Symbole ~ : broche PWM (D3, D5...)
res D om o | eEveo
Ancis] @G PDB
Broches analogiques — Analog pins ICEERTEER] ros
- analogRead() TOP VIEW 2 TX LED PDS5
8 RX LED PD4
@ Power

La modulation PWM (Pulse Width Modulation en anglais) ou modulation de largeur d'impulsions (MLI en frangais) est une
technique utilisée pour synthétiser des signaux pseudo analogiques a 'aide de circuits numériques.

Instructions pour lire le signal appliqué a une broche :
v' analogRead () sur une entrée analogique (A0 a A5) (tension délivrée par un capteur par exemple) ;
v' digitalRead() sur une entrée numérique (D2, D4, D7, D8, D12, D13).

Instructions pour envoyer un signal a une broche :
v' analogWrite () sur une broche numérique PWM simulant un signal analogique (D3, D5, D6, D9, D10, D11) ;
v digitalWrite () sur une broche numérique.

Définir le comportement d’une broche (entrée ou sortie) : pinMode (broche, mode) avec mode = INPUT ou OUTPUT.

PC Arduino_tuto.docx 1/13

Arduino IDE @

Sélectionner le type de carte Arduino et le port sur lequel elle est connectée dans la liste déroulante « Select Board ».

Un programme Arduino est appelé « sketch » (parfois traduit par « croquis » ou « esquisse »), I’extension de fichier est

11 est tapé dans la zone d’édition de I’interface, il doit &tre compilé (transformation du code source en fichier binaire) puis téléversé

sur la carte.

Des informations sur le processus de compilation sont affichées dans 1’onglet « Output » sous 1’éditeur (éventuelles erreurs, statut final,
mémoire disponible...).

| Verify / upload | | Open serial monitor
\ad | sketcH decl2a | Arduine IDE 2.3.6 — O
File| Edit | Sketch Tools Help Select board and port

sketch_dec12aino

| Sketchbook —
1 woid setup() {
2
Board manager = 3 -
| |_ :) Instructions d’initialisation Open serial plotter |
: 5
| Library manager '—— i 0id loop() {
= - - L
a Editeur
Debugger — 8 - - : >
| €8 |_ g 1 Instructions répétées en boucle (infinie)
18)
| Search }——
Utile en cas d’erreur de compilation :
Ligne et colonne de I’erreur (déplacer le curseur dans 1’éditeur)
_ 4
Qutput =06)

Ln1,Col1 X Noboardselected 0 B
N——"

Sketchbook : programmes enregistrés sur 1’ordinateur.
Board manager : packages nécessaires avec certaines cartes d’extension ajoutées sur la carte Arduino (WiFi,...).
Library manager : librairies/modules a utiliser pour les capteurs par exemple.
Serial moniter : visualisation du flux de données issu de la carte.
Les instructions Serial.print() et Serial.println() permettent d’écrire dans le moniteur série.
Serial Plotter : visualisation de graphes.

Utilisation d’une carte avec un ordinateur

& sketch_deci2a | Arduino IDE 2.2.6

Brancher la carte et lancer I’IDE. - . /
» . . , . ile it Sketch Tools A€lp
2. Sélectionner la carte et le port dans la liste déroulante (cf. ci-contre).
En cas de non détection, essayer de changer de port et de relancer I'IDE.
3. Créer un nouveau sketch (File / New Sketch) ou ouvrir un sketch enregistré (le dernier
utilisé est préchargé).
. Taper ou modifier le code ; I’aide en ligne est abondante.
5. Compiler le code .

Si tout se passe bien un message s’affiche en blanc (sinon lire le message affiché en
rouge et remédier aux problemes) :

—

' Arduine Uno

sketch_deX]

1 Arduine Uno
T coms

4o U R W N

oo

Output

Le croquis utilise 1676 octets (5%) de 1'espace de stockage de programmes. Le maximum est de 32256 octets.

Les variables globales utilisent 216 octets (1@%) de mémoire dynamique, ce qui laisse 1832 octets pour les variables locales. Le maximum est de 2048 octets.

6. Téléverser le code .

. A . . [Eo8 . . .
7. Cliquer sur I’'icne du moniteur série . ou sur I’onglet « Serial Monitor » s’il est déja ouvert.

PC Arduino_tuto.docx 2/13

Mémento langage Arduino C++

1| // Commentaire sur une ligne

2

3 | void setup () {

4| // Initialisation : instructions exécutées une seule fois
5| Instructionl;

6 | Instruction2;

.7
8
9

}

void loop() {

10 | // Instructions répétées en boucle infinie
11 | Instruction3;

12 |}

void : en C++, le mot-clé void indique qu'une fonction ne renvoie pas de valeur (cf. autres exemples de fonctions page 11).

Les délimiteurs sont les accolades (analogue a I’indentation en python).
A Erreur : Compilation error: expected '}' at end of input (par exemple).

Chaque instruction doit se terminer par un point-virgule (en python, uniquement pour séparer 2 instructions sur une méme ligne).
A Erreur : Compilation error: expected ';' before

Commentaires sur une seule ligne : / (# en python) ; multilignes /* ... */ (""" ... """ en python).

Noms de variables
Caracteres utilisables : _, 0, 1,2,...,9, A, B, ..., Z, a, b, ..., z (commence toujours par une lettre ou un tiret bas « _ »).

Types
Entiers short (2 octets 277 <n<2" -1, 16 bits) 215 =32 768
unsigned short (2octets 0<n < 2% —1)
char (1 octet 27 <n<2’ -1, 8 bits) ('A'et 65 sont équivalents, codage ASCII)
byte (1 octetOSns28—1)
int, unsigned int dépend du microcontrdleur (16 bits sur Arduino Uno)
long (4 octets 2" <n <2 -1, 32 bits)
unsigned long (4octets 0<n < 2% -1)
bool ou boolean deux valeurs true ou false (sans majuscule au contraire de python)
Flottants : float (9,4039548.10738 a 3,4028235.10*%8, 32 bits) Ex : 1.5¢e-2
Chaines : https://docs.arduino.cc/language-reference/en/variables/data-types/string/
Affectation

Comme en python, le symbole d’affectation est le signe égal : « = ».

Déclaration des variables et types
Dans le langage C le type et les variables doivent étre déclarés.
A Erreur : ‘nom_variable’ was not declared in this scope.

int i; // Déclaration sans affectation (I’affectation aura lieu plus loin dans le programme)
float pi = 3.14; // Déclaration et affectation simultanées
char ¢ = 'a';
Opérateurs
+, -, *, /, % (reste division enticre)
== (test d'égalité), ! = (test de différence), <, >, <=, >= (tests de comparaison)
! (négation), | | (ou), && (et)
Raccourcis
i=i+1; < i++; i=i-1; = i——;
a=a+b; = a+=b; a=a-b; = a-=b;

PC Arduino_tuto.docx 3/13

Instruction conditionnelle

if (conditions) {instructions}
else if (conditions) {instructions} (instruction else if facultative, peut étre répétée)
else (conditions) {instructions} (instruction else facultative)

Rq : il existe une instruction conditionnelle multiple switch...case

Boucles
while (conditions) {instructions}
for (i=0;1i<100;i=i+1) {instructions} (par exemple)

Rq : il existe une boucle do...while

Tableaux
La taille des tableaux doit étre une constante.

type nom_tableaul[dimension]

Exemples :
int liste[10];
float L[3] = {1.1, 2.2, 3.3};

Acces via I’indice/index (la numérotation commence a 0 comme en python) : nom_tableaulindice]

Directives de compilation
Une directive de compilation indique au compilateur de procéder a des opérations préalables au début de la compilation.
Ces directives se situent en tout début du programme source.

#include <fichier> / / Inclure des librairies (analogue a import en python)
#include "fichier.h" // Autre syntaxe
#define alias valeur // Remplace alias par valeur
Exemple : #define capteurl AQO analogue a const int capteurl = A0 mais gain de mémoire avec define.

Const
Ce mot clé permet de définir une variable qui, une fois initialisée, ne pourra plus étre modifiée.
Exemple :
Const float pi = 3.1415 ;
X =2 * pi ;

Aide en ligne https://docs.arduino.cc/language-reference/

Fonctions https://docs.arduino.cc/language-reference/#functions
Variables https://docs.arduino.cc/language-reference/#variables
Structure https://docs.arduino.cc/language-reference/#structure

Transfert des données - Annexes techniques

Port série — Cf. Exemple 1
Un port série, également appelé port COM, est un type d'interface informatique qui permet la communication entre un ordinateur
et des périphériques externes. Il s'agit d'un port physique sur un ordinateur ou un appareil qui permet d'envoyer et de recevoir des
données bit par bit et séquentiellement sur un seul fil.

Ouverture et écriture dans le port série

Serial.begin (v) Ouvrir le port série et fixer la vitesse v de transmission (valeurs prédéfinies, cf. exemple 1).

Serial.print (s) Ecrire la chaine s sur la ligne courante (a la suite de la derniére chaine écrite si elle existe) ou sur
une nouvelle ligne sinon sans retour a la ligne.

Serial.println(s) Ecrire la chaine s sur la ligne courante (a la suite de la derniere chaine écrite si elle existe) ou sur
une nouvelle ligne sinon puis retour a la ligne.

Time

11 est parfois nécessaire d’indiquer au microcontrdleur un délai d’attente (entre une mesure et son traitement par exemple).

delay (n) Attendre n ms (millisecondes).

millis () Renvoie le nombre de millisecondes écoulées depuis que le sketch a été téléversé et exécuté.

Fichiers et caracteres de codage « invisibles » — Cf. Exemple 2
Les fichiers comportent des caracteres « invisibles » (on peut les visualiser dans un éditeur de texte tel que Notepad++).
Il s’agit par exemple des caracteres qui provoquent un retour a la ligne, en python : \n (systeme Linux), \r\n (Windows), \r (Mac).
La bibliotheque python serial (https://pyserial.readthedocs.io/) permet de lire les lignes écrites dans le port série :
ligne = serial.Serial(port_serie, vitesse). readline() (lecture et stockage du résultat dans une variable nommée ligne).
Les données lues dans le port série sont au format binaire, ligne.decode("utf-8") permet de décoder ce format.

@ Ces informations sont utiles lorsqu’il s’ agit de sauvegarder des données lues sur le port série dans un fichier texte.

PC Arduino_tuto.docx 4/13

Q Les exemples ci-dessous doivent étre considérés comme des programmes élémentaires destinés a €tre assemblés afin de réaliser la
tache souhaitée (on trouve de tres nombreux exemples en ligne et/ou dans les exemples fournis avec I’IDE Arduino).
Chaque exemple illustre une fonctionnalité : communication, récupération des données, acquisition des données. ..

SR Toujours procéder par étapes en testant le bon fonctionnement des programmes au fur et & mesure de I’avancement.

Exemple 1 - Ecrire dans le port série

@ Application : visualiser des données en cours d’acquisition (acquisitions réelles 2 suivre)

Le skectch suivant illustre la communication entre la carte Arduino et 1’ordinateur via le port série (physiquement, via le céble
USB).

Serial.begin(v) Ouvrir le port série et fixer la vitesse v de transmission (valeurs prédéfinies, cf. ci-dessous).
Serial.print (s) Ecrire la chaine s (ligne courante si existante ou nouvelle ligne sinon) sans retour a la ligne final.
Serial.println (s) Ecrire la chalne s (ligne courante si existante ou nouvelle ligne sinon) puis retour a la ligne.
delay (n) Attendre n ms (millisecondes).

1|/~

2 Exemple 1 - Ecrire dans le port série

3|/

4

5 | void setup() {

6

// O série — vitesse transmission (en baud = bit/s)
}: Serial.begin (9600) ; <
8 ue 1 €rie n’est pas prét, attendre

9 | while (!Serial) {
10 delay (100) ; // Attendre 100 ms
11 }
12 | }
13
14 | void loop () {
15 | Serial.print ("Arduino "); // Affichages les uns ..
16 | Serial.print ("tuto "); // .. a la suite des autres (méme ligne)
17 | Serial.println("Hello world!"); // Affichage puis retour a la ligne
18 | delay (1000); // Attendre 1000 ms
19 | }

/\ Vérifier que la vitesse de transmission indiquée dans le port série correspond 2 la vitesse indiquée dans le sketch sous peine
de ne rien voir s’afficher.

Cutput Serial Monitor X O =

New Line ~ || 9600 baud v

=

750 baud

1200 baud

2400 baud /
4800 baud

9600 baud

19200 baud

31250 baud

Exemple 2 - Ecrire des valeurs numériques dans le port série et les stocker dans un fichier via python

Q Application : visualiser des données en cours d’acquisition et les récupérer via python (simulation, acquisitions réelles a suivre)

Le skectch suivant écrit des lignes (destinées a étre lues par un script python annexe et enregistrées dans un fichier) dans le port
série :
- une ligne d'en-téte (intitulés des colonnes) ;
- des lignes de données simulées (instant de mesure, valeur calculée a cet instant et numéro de la mesure).
Les lignes sont formatées au format csv : chaque colonne de données est séparée de la suivante par un ";".
Ces informations sont envoyées au port série et lues par un script python.

millis () Renvoie le nombre de millisecondes écoulées depuis que le sketch a été téléversé et exécuté.

PC Arduino_tuto.docx 5/13

1| int tO; // Instant initial, début des mesures (en ms)

2 | int ti; // Instant mesure courante (n°i) (en ms)

3 | float t; // Durée calculée en s : t = (ti-t0)/1000.0

4 | int cpt; // Compteur (n°® mesure courante)

5| int tMax = 5000; // Durée de l'acquisition en ms

6 | float mesure_capteur; // Valeur calculée simulant une mesure via un capteur
7

8 | void setup() {

9 Serial.begin(115200);
10 while (!Serial) {
11 delay (100);
12 }
13 // En—-téte futur fichier CSV (séparateurs colonnes ";") (script python annexe)
14 Serial.println("ti (s);Capteur (V) ;Numero mesure;");
15 | }
16 | void loop() {
17 cpt = 0;
18 t0 = millis();
19 ti = t0;
20 while ((ti-t0) <= tMax) { // Boucle de « mesure »
21 delay (100); // délai de 100 ms entre les mesures
22 cpt += 1; // N° mesure
23 ti = (millis()-tO0); // Temps écoulé (en ms)
24 t = (ti-t0)/1000.0; // Temps écoulé (en s)
25 mesure_capteur = 20 * t + 100;
26
27 // Formatage au format CSV dans le moniteur série (« ; » entre colonnes)
28 Serial.print (t); // 1¢ér® colonne de données
29 Serial.print (";"); // Séparateur de colonnes

30 Serial.print (mesure_capteur) ; // 2¢m¢ colonne de données

31 Serial.print (";"); // Séparateur de colonnes

32 Serial.println(cpt); // 3¢m colonne de données

33 }

34 // Fin de la boucle while simulant les mesures

35 Serial.println("Stop"); // A ce signal, le script python ferme le fichier.
36 // Boucle infinie sans action : plus rien n'est envoyé sur le port série.
37 while (true) {;}

38 | }

Q Ligne 37 : la boucle infinie n’exécutant aucune action permet d’interrompre le flux de données transmises au port série
(sinon I’envoi de la chaine « Stop » est répété indéfiniment).

Programme Python
1 | import serial

2 | import time

3

4 | # Communication

5 | port_serie = 'COM3' # Cf. Arduino IDE (port sélectionné)

6 | bauds = 115200 # Cf. sketch arduino : Serial.begin (bauds)
7 | # Enregistrement des mesures

8 | dossier = "" # Dossier courant (dossier de ce fichier python)
9 | nom_fichier = "exemple2.txt" # A personnaliser
10 chemin = dossier + nom_fichier
11
12 ps = serial.Serial (port_serie, bauds) Ouverture du port série

Ouverture du fichier en écriture
Boucle "infinie"

13 fichier = open(chemin, "w+")
14 | while True:

Fermeture du fichier
Fermeture du port série

23 | fichier.close()
24 | ps.close()

#

#

#
15 ligne = ps.readline() # Lecture d'une ligne sur le port série
16 #print (ligne) # Débogage (fin de ligne = \r\n => 2 sauts)
17 ligne = ligne[:-1] # Traitement (suppression \n fin de ligne)
18 ligne = ligne.decode ("utf-8") # readline -> binaire, conversion
19 if 'Stop' in ligne: # Message d’arrét défini dans sketch Arduino
20 break # Sortie de la boucle while
21 print (ligne) # Vérification visuelle dans le shell
22 fichier.write (ligne) # Ecriture de la ligne dans le fichier

#

#

1. Téléverser le sketch sur la carte Arduino.
2. Fermer le moniteur série Arduino (ne pas déconnecter la carte du port USB).
3. Exécuter le programme python : les données lues doivent s’afficher dans le shell.

/A L'onglet "Serial Monitor' doit rester fermé pour que python puisse ouvrir le port série.
Erreur python : serial.serialutil.SerialException: could not open port 'COM3': PermissionError(13, 'Accés refusé.', None, 5)

Arduino_tuto.docx 6/13

Exemple 3 — Acquisition d’un flux de données analogiques - analogRead()

https://docs.arduino.cc/built-in-examples/basics/Read AnalogVoltage/

@ Application : enregistrer un flux ininterrompu de données analogiques

On applique sur la broche A0 de la carte Arduino la tension ucg entre les pattes B et C d’un potentiometre soumis a la tension
uas =5 V. On fait varier cette tension manuellement en agissant sur le potentiometre rotatif.

analogRead (pin) Lire la valeur binaire sur la broche pin (A0 a AS), cf. page 1.

& Convertisseur analogique numérique (CAN ou ADC pour analog-to-digital-converter en anglais) n bits : une grandeur analogique
appliquée au CAN est discrétisée sur 2" valeurs (de 0 a 2" -1).

La carte Arduino UNO est équipée d’un CAN 10 bits : on dispose donc de 2!° = 1024 valeurs, de 0 a 1023, pour représenter la
grandeur analogique appliquée sur une broche. La fonction analogRead () renvoie la valeur binaire issue du CAN.
11 faut donc convertir la valeur binaire en volts dans le cas envisagé en sachant que la tension appliquée au potentiometre est 5 V.

Schéma du circuit
La broche utilisée est la broche A0, on applique une tension au potentiometre (10 kQ) grace aux broches 5V et GND de la carte.

sV

Axduino
unNo

== mmoEiG

BN
| q
TTrrrrrrrrrnrnl

"= mmw
TR)
" s mmmg

R
ONINQuY

o o -
Couw 1.
J_ o B o -
= cmm =1 A3 2
- Uucn =1 A4 ™31
y
\ y
Sketch
1 int U_binaire; // "Tension" lue : valeur renvoyée par analogRead() entre 0 et 1023
2 float U_Volts; // Tension vraie en volts
3
4 void setup () {
5 Serial.begin(115200);
6 while (!Serial) {
7 delay (100);
8 }
9 }
10
11 | void loop () {
12 // Lecture de la tension analogique appliquée sur la broche A0 de 1'Arduino
13 U_binaire = analogRead (A0);
14
15 // Conversion en Volts (analogique de 0 a 5 V & numérique de 0 a 1023)
16 U_Volts = U_binaire / 1023.0 * 5.0;
17
18 Serial.println(U_Volts);
19
20 delay (500); // Utile pour ralentir le flux de données
21 }

@ La conversion valeur binaire / volts est effectuée ligne 16 (proportionnalité).
/\ Ligne 16 : bien écrire 1023.0 et 5.0 afin que ces nombres soient traités comme des flottants

Remarque : le flux est ininterrompu, on verra dans d’autres exemples comment déclencher et interrompre le flux de mesures.

PC Arduino_tuto.docx 7/13

Exemple 4 — Acquisition de données numériques - digitalRead()

https://docs.arduino.cc/built-in-examples/basics/DigitalReadSerial/

Q Application : enregistrer un flux ininterrompu de données numériques

Bouton poussoir :

- lorsque le bouton est relaché, la patte C du bouton est reliée a B donc a la terre via la résistance R, la valeur LOW = 0 est alors

lue par une broche numérique ;

- lorsque le bouton est enfoncé, la patte C du bouton est reliée au potentiel 5V en A, la valeur lue par la broche numérique

correspond alors a la valeur HIGH = 1.

pinMode (pin, mode) Configurer la broche pin en entrée (mode = INPUT) ou en sortie (mode = OUTPUT).

digitalRead (pin) Lire la valeur booléenne sur la broche pin (2, 4,7, 8, 12, 13).

Schéma du circuit
La broche utilisée est la broche 2.

13
12
11
10

>
E]
=]
[
H
z
o

A0
Al
A2
A3 2

FTTrrrrrrnrnil

I_ Bouton
poussoir

=
s
1

%R:lOkQ

Sketch
1 | int boutonPoussoir = 2; // Nom de variable : bouton poussoir connecté broche 2
2 int etatBouton;
3
4 | void setup() {
5 Serial.begin(115200) ;
6 while (!Serial) {
7 delay (100);
8 }
9 // Configure la broche 2 = boutonPoussoir en entrée (INPUT)
10 pinMode (boutonPoussoir, INPUT);
11 }
12
13 | void loop () {
14 // Lecture de la broche numérique
15 etatBouton = digitalRead (boutonPoussoir);
16
17 Serial.println (etatBouton);
18 delay (500) ;
19 | }

PC Arduino_tuto.docx

8/13

Exemple 5 — Sortie numérique PWM simulant un signal analogique - analogWrite()

https://docs.arduino.cc/built-in-examples/basics/Fade/

Q Application : générer un signal pseudo-analogique

Modulation de largeur d’impulsion (schéma ci-contre) : en faisant varier le rapport cyclique
(durée du niveau haut / durée du niveau bas) des impulsions, on fait varier la valeur moyenne
du signal.

C’est cette valeur moyenne qui simule un signal analogique. Le rapport cyclique pouvant
varier rapidement, la valeur moyenne peut également évoluer au cours du temps et simuler un
signal analogique variable dans le temps.

On fait varier la luminosité d’une LED en utilisant une sortie numérique PWM a modulation

de largeur d’impulsion.

Ecrire la valeur niveau sur la broche pin (~3, ~5, ~6,
analogWrite () accepte des valeurs entre O et 255.

analogWrite (pin, niveau)

Schéma du circuit
La broche PWM utilisée est la broche ~9.

Sv

Oov

Sv

Pulse Width Modulation
0% Duty Cycle - analogWrite(0)

25% Duty Cycle - analogWrite(64)

Ov

50% Duty Cycle - analogWrite(127)

75% Duty Cycle - analogWrite(191)
1 1 1 1

1

100% Duty Cycle - analogWrite(255)
N f L

]]

~10, ~11 PWM = symbole ~).

4 N
|
5V
B B =
— Axduine iz =
1 11
-----!‘:-g--.----..‘ UNO 10 =
..-mma.a..‘ & =
" B N S N EEE S EEEEEEEE 7 -
2 Y = R=220Q
g =1 he 5 b=
= A R R R EE R N ™ st 4 b=
= R [] o
L e e | =
(@] " s mmmEEEEEEmmEEomow = A4 TES 1 f
= =) AS RXE D fum LED
GND S]
I " s s m - - - - .
e s m . |
Sketch
1 int led = 9; // Nom de variable n°® de la broche PWM connectée a la LED
2 | int intensite = 0; // Niveau de luminosité
3 | int variationI = 5; // Pas = Al de variation de 1l'intensité
4
5 | void setup() {
6 // Configure la broche 9 = led en sortie (OUTPUT)
7 pinMode (led, OUTPUT);
8|
9
10 | void loop() {
11 // Fixe le niveau de luminosité de la led en écrivant ce niveau & la broche 9
12 analogWrite (led, intensite);
13
14 // Modifie la luminosité a chaque boucle
15 intensite = intensite + variationI;
16
17 // Modifie le sens de variation lorsque les bornes sont atteintes
18 if (intensite <= 0 || intensite >= 255) {
19 variationI = -variationI;
20 }
21 delay (30);
22 }

PC

Arduino_tuto.docx

9/13

Exemple 6 — analogRead() - analogWrite()

https://docs.arduino.cc/built-in-examples/analog/AnalogInOutSerial/

Q Application : générer un signal pseudo-analogique a partir d’un autre signal analogique

Cet exemple effectue une synthese des exemples 3 et 5 et reprend le méme matériel.

Le potentiometre 10 kQ (simulant ici un capteur) va permettre de fixer le niveau de luminosité de la LED.

analogRead () renvoie une valeur dans I’intervalle [0, 1023].
analogWrite () accepte des valeurs dans I’intervalle [0, 255].

La fonction map (brocheEntréeAnalogique, 0, 1023, 0, 255) permetde convertir les valeurs issues d’une broche d’entrée

analogique renvoyant des valeurs comprises entre 0 et 1023 en valeurs « compressées » dans I’intervalle 0-255.

e
P
"
= e
==
ool
"
"
= nm
=
=
s
P
mma RS
=
T
"
"=

ONINQHY

LRI]
L R

]

L

TTTTTTTTT

&

5V

ARDUINO

UNO

a0
a

a4

TTTT
220 Q

R

‘¢

A\ y
Sketch

1 | const int analogInPin = A0; // Entrée broche analogique connectée au potentiometre
2 | const int analogOutPin = 9; // Sortie broche PWM analogique connectée a la LED
3
4 | int sensorValue = 0; // Valeur lue sur la broche du potentiométre
5 int outputValue = 0; // Valeur écrite sur la broche de la LED
6
7 | void setup() {
8 Serial.begin(115200);
9 while (!Serial) {

10 delay (100);

11 }

12 }

13

14 | void loop() {

15 sensorValue = analogRead(analogInPin); // Lecture broche entrée

16 (capteur)

17

18 // Définition des intervalles de variations

19 outputValue = map (sensorValue, 0, 1023, 0, 255);

20

21 analogWrite (analogOutPin, outputValue); // Ecriture broche sortie (LED)

22

23 // Affichage dans le moniteur série

24 Serial.print ("Capteur = ");

25 Serial.print (sensorValue);

26 Serial.print ("\t sortie = ");

27 Serial.println (outputValue);

28

29 delay (300) ;

30 }

PC Arduino_tuto.docx 10/13

Exemple 7 — Acquisition de données analogiques et entrées clavier — Fonctions renvoyant un résultat ou non

@ Principe : enregistrer un signal analogique point par point avec entrées de données au clavier.

Le sketch ci-dessous permet de réaliser 1’acquisition de grandeurs (analogiques ou numériques) en contr6lant 1’acquisition au
clavier :

- soit pour entrer des données au clavier pour une mesure difficile a effectuer via un capteur ;

- soit pour interrompre I’acquisition et effectuer un réglage entre deux mesures.

Par ailleurs, les acquisitions et les sorties sont regroupées dans deux fonctions (non indispensable mais données a titre d’exemple
afin d’illustrer la structure de programmes complexes).

Sketch

1| // Un seul capteur dans cet exemple : entrée analogique A0

2 | #define capteurPin A0 // Broche Arduino utilisée

3

4 | float capteurValeur; // Variable de stockage de la valeur capteur

5 | float entreeClavier; // Données clavier issues du port série

6

7 | void setup() {

8 Serial.begin(115200);

9 while (!Serial) {;}

10 Serial.println ("\nEntrée clavier;Capteur"); // Colonnes (en-téte fichier)
11 }

12

13 | void loop () {
14 if (Serial.available() > 0) { // Si données dans le port série
15 entreeClavier = Serial.parseFloat(); // Conversion données port série
16 capteurValeur = lecture (capteurPin); // Lecture capteur

17 ecriture (entreeClavier, capteurValeur); // Ecriture dans le port série
18 }

19 }
20
21 float lecture (int broche) {
22 float valeurMesuree = analogRead (broche) / 1023.0 * 5.0; // Conversion
23 delay(2); // delai (ms) pour laisser le CAN réagir
24 return valeurMesuree;
25 }
26
27 void ecriture (float ¢, float v) {
28 Serial.print(c);
29 Serial.print(";");

30 Serial.println(v);

31 }

Q@ Alaligne 2, #define est une directive de compilation (cf. page 4).

@ A laligne 21, on définit une fonction lecture admettant deux parametres et renvoyant une valeur (syntaxe avec type sans void).
A la ligne 27, on définit une fonction ecriture admettant deux parametres et ne renvoyant aucune valeur (void sans type).
L’ordre d’écriture des fonctions est sans importance.

Q@ A la ligne 15, la boucle est interrompue tant que rien n’est entré au clavier dans la zone de saisie (copie d’écran ci-dessous).
Apres validation, les lignes 16 et 17 sont exécutées et la boucle recommence.
Lignes 15 et 28 des conversions sont effectuées car les données transitant par le port série sont des chaines (lecture et écriture).

Output Serial Monitor X 0=
98.7) Zone saisie clavier ‘ NolLine Ending ¥ 115200baud ~
Entrée clavier;Capteur

Entrée clavier;Capteur

52.30:2.00

PC Arduino_tuto.docx 11/13

/ Application : mesure de pression (capteur Elab-PA) et de volume (clavier).

Carte Educaduino (Arduino Mega) avec capteur de pression absolue :

Le volume est lu sur la seringue et la valeur sera entrée au clavier.

Le capteur de pression absolue Elab-PA renvoie sur la broche A9 une valeur de type float codée sur 10 bits donc comprise dans
I’intervalle [0.0, 1023.0] correspondant a une pression (en Pa) dans I’intervalle [20 000, 400 000] (i.e. entre 200 et 4000 hPa).
11 faut donc définir une fonction permettant de calculer la pression réelle P a partir de la valeur mesurée V :

P P
P=aV+boua=—"—" etb=P_—aV,__ avec Puwu=400000, Py, =20000, Vyax = 1023.0, Vyin = 0.0.

Vv -V
Ecrire le croquis (ou esquisse) permettant d’entrer les valeurs de volume au clavier et de mesurer la pression avec le capteur et
d’afficher les données dans le moniteur série.

Puis récupérer ces données via python, tracer le produit PV en fonction de V. La loi de Mariotte est-elle vérifiée ?

PC

Arduino_tuto.docx 12/13

Exemple 8 — Niveaux d’intensité lumineuse — Utilisation d’une photodiode (BPW 34)

Fonctionnement d’une photodiode
En bleu, les caractéristiques I(U) de la photodiode (cf.
convention récepteur sur le graphe) pour différentes —_—
valeurs E; de I’éclairement (ou intensité lumineuse). >+
En vert les caractéristiques du dipdle connecté a la
photodiode (montage indiqué pour les deux quadrants A=anode }>)| K= cathode
inférieurs). Us
E,

Rl—»t

On note R; la résistance dite de charge (Load en anglais).

E;

E Fonctionnement en L Fonctionnement photovoltaique
Dans le cadran supérieur droit, la photodiode se comporte : Photodiode % (cullulu solaire = générateur)
comme une diode « simple ». E, \

Intensité lumineuse

On distingue deux modes de fonctionnement utiles : E,< Ey< E;< Eo< E

v en cellule solaire (générateur), la diode non
polarisée (Va > Vk donc U > 0) débite dans la U <

résistance de charge Ry qui effectue la conversion x ﬁ]
>0

R, — 0

courant / tension (les deux droites en vert tracées

U Ry, Ur RipI>0
dans ce cadran ont pour équation I = -—% avec

R

Diode non polarisée

5 Diode polarisée en inverse

Ugr = U, cf. schéma) ;
v' en mode photodiode, la diode est polarisée en inverse (Vk > Va donc U < 0) grice au générateur de f.e.m. Uy (intensité [est de
I’ordre du pA), Uintensité électrique I est alors proportionnelle a I’éclairement lumineux E (le dipdle connecté aux bornes de la

. - U+U,
photodiode a pour caractéristique [= ———)
L
Montage pratique en mode photodiode
R §| 1 R; I l Ry [® Vec=+15V
On démontre facilement que U; =R, | 1 +—= I R- 1
; ~
Ordres de grandeur : Y Iy
Ri =1kQ, R> = 22 kQ (amplification) + S
R3=1kQ, Ry =10 kQ (pont permettant de fixer Up) U v/ A
RL=1210kQ 0 K ’, -
/\ Avec Arduino, ajuster R, et/ou Ry. de facon a ce que Us <5V ! EE] || R; II
Valeurs optimales lorsque le bruit n’est pas génant (Ry assez Us
grand) et Us aussi grand que possible pour I’éclairement le plus R
fort mais inférieur a 5 V impérativement pour mesurer Us avec !
Arduino.
V22 77177 77717

¢/ Application : vérification de la linéarité (I 0 E)

Imaginer un montage avec deux LED permettant de vérifier la linéarité du montage (sans Arduino dans un premier temps).
Etablir un protocole précis et faire un schéma du dispositif.

PC Arduino_tuto.docx 13/13

